Abstract:The conventional image-based virtual try-on method cannot generate fitting images that correspond to the clothing size because the system cannot accurately reflect the body information of a person. In this study, an image-based virtual try-on system that could adjust the clothing size was proposed. The size information of the person and clothing were used as the input for the proposed method to visualize the fitting of various clothing sizes in a virtual space. First, the distance between the shoulder width and height of the clothing in the person image is calculated based on the coordinate information of the key points detected by OpenPose. Then, the system changes the size of only the clothing area of the segmentation map, whose layout is estimated using the size of the person measured in the person image based on the ratio of the person and clothing sizes. If the size of the clothing area increases during the drawing, the details in the collar and overlapping areas are corrected to improve visual appearance.
Abstract:To ensure protection of the intellectual property rights of DNN models, watermarking techniques have been investigated to insert side-information into the models without seriously degrading the performance of original task. One of the threats for the DNN watermarking is the pruning attack such that less important neurons in the model are pruned to make it faster and more compact as well as to remove the watermark. In this study, we investigate a channel coding approach to resist the pruning attack. As the channel model is completely different from conventional models like digital images, it has been an open problem what kind of encoding method is suitable for DNN watermarking. A novel encoding approach by using constant weight codes to immunize the effects of pruning attacks is presented. To the best of our knowledge, this is the first study that introduces an encoding technique for DNN watermarking to make it robust against pruning attacks.