Abstract:This paper presents Soundbay, an open-source Python framework that allows bio-acoustics and machine learning researchers to implement and utilize deep learning-based algorithms for acoustic audio analysis. Soundbay provides an easy and intuitive platform for applying existing models on one's data or creating new models effortlessly. One of the main advantages of the framework is the capability to compare baselines on different benchmarks, a crucial part of emerging research and development related to the usage of deep-learning algorithms for animal call analysis. We demonstrate this by providing a benchmark for cetacean call detection on multiple datasets. The framework is publicly accessible via https://github.com/deep-voice/soundbay
Abstract:This paper presents Deepchecks, a Python library for comprehensively validating machine learning models and data. Our goal is to provide an easy-to-use library comprising of many checks related to various types of issues, such as model predictive performance, data integrity, data distribution mismatches, and more. The package is distributed under the GNU Affero General Public License (AGPL) and relies on core libraries from the scientific Python ecosystem: scikit-learn, PyTorch, NumPy, pandas, and SciPy. Source code, documentation, examples, and an extensive user guide can be found at \url{https://github.com/deepchecks/deepchecks} and \url{https://docs.deepchecks.com/}.