Abstract:A network of nanomachines (NMs) can be used to build a target detection system for a variety of promising applications. They have the potential to detect toxic chemicals, infectious bacteria, and biomarkers of dangerous diseases such as cancer within the human body. Many diseases and health disorders can be detected early and efficiently treated in the future by utilizing these systems. To fully grasp the potential of these systems, mathematical analysis is required. This paper describes an analytical framework for modeling and analyzing the performance of target detection systems composed of multiple mobile nanomachines of varying sizes with passive/absorbing boundaries. We consider both direct contact detection, in which NMs must physically contact the target to detect it, and indirect sensing, in which NMs must detect the marker molecules emitted by the target. The detection performance of such systems is calculated for degradable and non-degradable targets, as well as mobile and stationary targets. The derived expressions provide various insights, such as the effect of NM density and target degradation on detection probability.
Abstract:Molecular communication is a promising solution to enable intra-body communications among nanomachines. However, malicious and non-cooperative receivers can degrade the performance, compromising these systems' security. Analyzing the communication and security performance of these systems requires accurate channel models. However, such models are not present in the literature. In this work, we develop an analytical framework to derive the hitting probability of a molecule on a fully absorbing receiver (FAR) in the presence of other FARs, which can be either be cooperative or malicious. We first present an approximate hitting probability expression for the 3-FARs case. A simplified expression is obtained for the case when FARs are symmetrically positioned. Using the derived expressions, we study the impact of malicious receivers on the intended receiver and discuss how to minimize this impact to obtain a secure communication channel. We also study the gain that can be obtained by the cooperation of these FARs. We then present an approach to extend the analysis for a system with N FARs. The derived expressions can be used to analyze and design multiple input/output and secure molecular communication systems.