Abstract:Pagination - the process of determining where to break an article across pages in a multi-article layout is a common layout challenge for most commercially printed newspapers and magazines. To date, no one has created an algorithm that determines a minimal pagination break point based on the content of the article. Existing approaches for automatic multi-article layout focus exclusively on maximizing content (number of articles) and optimizing aesthetic presentation (e.g., spacing between articles). However, disregarding the semantic information within the article can lead to overly aggressive cutting, thereby eliminating key content and potentially confusing the reader, or setting too generous of a break point, thereby leaving in superfluous content and making automatic layout more difficult. This is one of the remaining challenges on the path from manual layouts to fully automated processes that still ensure article content quality. In this work, we present a new approach to calculating a document minimal break point for the task of pagination. Our approach uses a statistical language model to predict minimal break points based on the semantic content of an article. We then compare 4 novel candidate approaches, and 4 baselines (currently in use by layout algorithms). Results from this experiment show that one of our approaches strongly outperforms the baselines and alternatives. Results from a second study suggest that humans are not able to agree on a single "best" break point. Therefore, this work shows that a semantic-based lower bound break point prediction is necessary for ideal automated document synthesis within a real-world context.