Abstract:The pursuit of creating artificial intelligence (AI) mirrors our longstanding fascination with understanding our own intelligence. From the myths of Talos to Aristotelian logic and Heron's inventions, we have sought to replicate the marvels of the mind. While recent advances in AI hold promise, singular approaches often fall short in capturing the essence of intelligence. This paper explores how fundamental principles from biological computation--particularly context-dependent, hierarchical information processing, trial-and-error heuristics, and multi-scale organization--can guide the design of truly intelligent systems. By examining the nuanced mechanisms of biological intelligence, such as top-down causality and adaptive interaction with the environment, we aim to illuminate potential limitations in artificial constructs. Our goal is to provide a framework inspired by biological systems for designing more adaptable and robust artificial intelligent systems.
Abstract:Developments in quantum computing and, more in general, non-standard computing systems, represent a clear indication that the very notion of what a physical computing device is and does should be recast in a rigorous and sound framework. Physical computing has opened a whole stream of new research aimed to understand and control how information is processed by several types of physical devices. Therefore, classical definitions and entire frameworks need to be adapted in order to fit a broader notion of what physical computing systems really are. Recent studies have proposed a formalism that can be used to carve out a more proper notion of physical computing. In this paper we present a framework which capture such results in a very natural way via some basic constructions in Category Theory. Furthermore, we show that, within our framework, the compositional nature of physical computing systems is naturally formalized, and that it can be organized in coherent structures by the means of their relational nature.
Abstract:Thalamus has traditionally been considered as only a relay source of cortical inputs, with hierarchically organized cortical circuits serially transforming thalamic signals to cognitively-relevant representations. Given the absence of local excitatory connections within the thalamus, the notion of thalamic `relay' seemed like a reasonable description over the last several decades. Recent advances in experimental approaches and theory provide a broader perspective on the role of the thalamus in cognitively-relevant cortical computations, and suggest that only a subset of thalamic circuit motifs fit the relay description. Here, we discuss this perspective and highlight the potential role for the thalamus -- and specifically mediodorsal (MD) nucleus -- in dynamic selection of cortical representations through a combination of intrinsic thalamic computations and output signals that change cortical network functional parameters. We suggest that through the contextual modulation of cortical computation, thalamus and cortex jointly optimize the information/cost tradeoff in an emergent fashion. We emphasize that coordinated experimental and theoretical efforts will provide a path to understanding the role of the thalamus in cognition, along with an understanding to augment cognitive capacity in health and disease.
Abstract:Our desire and fascination with intelligent machines dates back to the antiquity's mythical automaton Talos, Aristotle's mode of mechanical thought (syllogism) and Heron of Alexandria's mechanical machines and automata. However, the quest for Artificial General Intelligence (AGI) is troubled with repeated failures of strategies and approaches throughout the history. This decade has seen a shift in interest towards bio-inspired software and hardware, with the assumption that such mimicry entails intelligence. Though these steps are fruitful in certain directions and have advanced automation, their singular design focus renders them highly inefficient in achieving AGI. Which set of requirements have to be met in the design of AGI? What are the limits in the design of the artificial? Here, a careful examination of computation in biological systems hints that evolutionary tinkering of contextual processing of information enabled by a hierarchical architecture is the key to build AGI.