Abstract:Text-Based Person Search (TBPS) has seen significant progress with vision-language models (VLMs), yet it remains constrained by limited training data and the fact that VLMs are not inherently pre-trained for pedestrian-centric recognition. Existing TBPS methods therefore rely on dataset-centric fine-tuning to handle distribution shift, resulting in multiple independently trained models for different datasets. While synthetic data can increase the scale needed to fine-tune VLMs, it does not eliminate dataset-specific adaptation. This motivates a fundamental question: can we train a single unified TBPS model across multiple datasets? We show that naive joint training over all datasets remains sub-optimal because current training paradigms do not scale to a large number of unique person identities and are vulnerable to noisy image-text pairs. To address these challenges, we propose Scale-TBPS with two contributions: (i) a noise-aware unified dataset curation strategy that cohesively merges diverse TBPS datasets; and (ii) a scalable discriminative identity learning framework that remains effective under a large number of unique identities. Extensive experiments on CUHK-PEDES, ICFG-PEDES, RSTPReid, IIITD-20K, and UFine6926 demonstrate that a single Scale-TBPS model outperforms dataset-centric optimized models and naive joint training.




Abstract:Large vision-language models have revolutionized cross-modal object retrieval, but text-based person search (TBPS) remains a challenging task due to limited data and fine-grained nature of the task. Existing methods primarily focus on aligning image-text pairs into a common representation space, often disregarding the fact that real world positive image-text pairs share a varied degree of similarity in between them. This leads models to prioritize easy pairs, and in some recent approaches, challenging samples are discarded as noise during training. In this work, we introduce a boosting technique that dynamically identifies and emphasizes these challenging samples during training. Our approach is motivated from classical boosting technique and dynamically updates the weights of the weak positives, wherein, the rank-1 match does not share the identity of the query. The weight allows these misranked pairs to contribute more towards the loss and the network has to pay more attention towards such samples. Our method achieves improved performance across four pedestrian datasets, demonstrating the effectiveness of our proposed module.