Abstract:Recent global estimates suggest that as many as 2.41 billion individuals have health conditions that would benefit from rehabilitation services. Home-based Physical Therapy (PT) faces significant challenges in providing interactive feedback and meaningful observation for therapists and patients. To fill this gap, we present MicroXercise, which integrates micro-motion analysis with wearable sensors, providing therapists and patients with a comprehensive feedback interface, including video, text, and scores. Crucially, it employs multi-dimensional Dynamic Time Warping (DTW) and attribution-based explainable methods to analyze the existing deep learning neural networks in monitoring exercises, focusing on a high granularity of exercise. This synergistic approach is pivotal, providing output matching the input size to precisely highlight critical subtleties and movements in PT, thus transforming complex AI analysis into clear, actionable feedback. By highlighting these micro-motions in different metrics, such as stability and range of motion, MicroXercise significantly enhances the understanding and relevance of feedback for end-users. Comparative performance metrics underscore its effectiveness over traditional methods, such as a 39% and 42% improvement in Feature Mutual Information (FMI) and Continuity. MicroXercise is a step ahead in home-based physical therapy, providing a technologically advanced and intuitively helpful solution to enhance patient care and outcomes.
Abstract:Emotions are an essential part of human behavior that can impact thinking, decision-making, and communication skills. Thus, the ability to accurately monitor and identify emotions can be useful in many human-centered applications such as behavioral training, tracking emotional well-being, and development of human-computer interfaces. The correlation between patterns in physiological data and affective states has allowed for the utilization of deep learning techniques which can accurately detect the affective states of a person. However, the generalisability of existing models is often limited by the subject-dependent noise in the physiological data due to variations in a subject's reactions to stimuli. Hence, we propose a novel cost function that employs Optimal Transport Theory, specifically Wasserstein Distance, to scale the importance of subject-dependent data such that higher importance is assigned to patterns in data that are common across all participants while decreasing the importance of patterns that result from subject-dependent noise. The performance of the proposed cost function is demonstrated through an autoencoder with a multi-class classifier attached to the latent space and trained simultaneously to detect different affective states. An autoencoder with a state-of-the-art loss function i.e., Mean Squared Error, is used as a baseline for comparison with our model across four different commonly used datasets. Centroid and minimum distance between different classes are used as a metrics to indicate the separation between different classes in the latent space. An average increase of 14.75% and 17.75% (from benchmark to proposed loss function) was found for minimum and centroid euclidean distance respectively over all datasets.