Abstract:The increasing integration of artificial intelligence (AI) systems in various fields requires solid concepts to ensure compliance with upcoming legislation. This paper systematically examines the compliance of AI systems with relevant legislation, focusing on the EU's AI Act and the compliance of data sets. The analysis highlighted many challenges associated with edge devices, which are increasingly being used to deploy AI applications closer and closer to the data sources. Such devices often face unique issues due to their decentralized nature and limited computing resources for implementing sophisticated compliance mechanisms. By analyzing AI implementations, the paper identifies challenges and proposes the first best practices for legal compliance when developing, deploying, and running AI. The importance of data set compliance is highlighted as a cornerstone for ensuring the trustworthiness, transparency, and explainability of AI systems, which must be aligned with ethical standards set forth in regulatory frameworks such as the AI Act. The insights gained should contribute to the ongoing discourse on the responsible development and deployment of embedded AI systems.
Abstract:Load safety assessment and compliance is an essential step in the corporate process of every logistics service provider. In 2020, a total of 11,371 police checks of trucks were carried out, during which 9.6% (1091) violations against the load safety regulations were detected. For a logistic service provider, every load safety violation results in height fines and damage to reputation. An assessment of load safety supported by artificial intelligence (AI) will reduce the risk of accidents by unsecured loads and fines during safety assessments. This work shows how photos of the load, taken by the truck driver or the loadmaster after the loading process, can be used to assess load safety. By a trained two-stage artificial neural network (ANN), these photos are classified into three different classes I) cargo loaded safely, II) cargo loaded unsafely, and III) unusable image. By applying several architectures of convolutional neural networks (CNN), it can be shown that it is possible to distinguish between unusable and usable images for cargo safety assessment. This distinction is quite crucial since the truck driver and the loadmaster sometimes provide photos without the essential image features like the case structure of the truck and the whole cargo. A human operator or another ANN will then assess the load safety within the second stage.