Abstract:Solar irradiance forecasts can be dynamic and unreliable due to changing weather conditions. Near the Arctic circle, this also translates into a distinct set of further challenges. This work is forecasting solar irradiance with Norwegian data using variations of Long-Short-Term Memory units (LSTMs). In order to gain more trustworthiness of results, the probabilistic approaches Quantile Regression (QR) and Maximum Likelihood (MLE) are optimized on top of the LSTMs, providing measures of uncertainty for the results. MLE is further extended by using a Johnson's SU distribution, a Johnson's SB distribution, and a Weibull distribution in addition to a normal Gaussian to model parameters. Contrary to a Gaussian, Weibull, Johnson's SU and Johnson's SB can return skewed distributions, enabling it to fit the non-normal solar irradiance distribution more optimally. The LSTMs are compared against each other, a simple Multi-layer Perceptron (MLP), and a smart-persistence estimator. The proposed LSTMs are found to be more accurate than smart persistence and the MLP for a multi-horizon, day-ahead (36 hours) forecast. The deterministic LSTM showed better root mean squared error (RMSE), but worse mean absolute error (MAE) than a MLE with Johnson's SB distribution. Probabilistic uncertainty estimation is shown to fit relatively well across the distribution of observed irradiance. While QR shows better uncertainty estimation calibration, MLE with Johnson's SB, Johnson's SU, or Gaussian show better performance in the other metrics employed. Optimizing and comparing the models against each other reveals a seemingly inherent trade-off between point-prediction and uncertainty estimation calibration.