Abstract:The paper proposes a novel machine learning-based approach to the pathfinding problem on extremely large graphs. This method leverages diffusion distance estimation via a neural network and uses beam search for pathfinding. We demonstrate its efficiency by finding solutions for 4x4x4 and 5x5x5 Rubik's cubes with unprecedentedly short solution lengths, outperforming all available solvers and introducing the first machine learning solver beyond the 3x3x3 case. In particular, it surpasses every single case of the combined best results in the Kaggle Santa 2023 challenge, which involved over 1,000 teams. For the 3x3x3 Rubik's cube, our approach achieves an optimality rate exceeding 98%, matching the performance of task-specific solvers and significantly outperforming prior solutions such as DeepCubeA (60.3%) and EfficientCube (69.6%). Additionally, our solution is more than 26 times faster in solving 3x3x3 Rubik's cubes while requiring up to 18.5 times less model training time than the most efficient state-of-the-art competitor.
Abstract:The latest research in the field of voice anti-spoofing (VAS) shows that deep neural networks (DNN) outperform classic approaches like GMM in the task of presentation attack detection. However, DNNs require a lot of data to converge, and still lack generalization ability. In order to foster the progress of neural network systems, we introduce a Large Replay Parallel Dataset (LRPD) aimed for a detection of replay attacks. LRPD contains more than 1M utterances collected by 19 recording devices in 17 various environments. We also provide an example training pipeline in PyTorch [1] and a baseline system, that achieves 0.28% Equal Error Rate (EER) on evaluation subset of LRPD and 11.91% EER on publicly available ASVpoof 2017 [2] eval set. These results show that model trained with LRPD dataset has a consistent performance on the fully unknown conditions. Our dataset is free for research purposes and hosted on GDrive. Baseline code and pre-trained models are available at GitHub.