Abstract:This paper systematically explores the advancements in adaptive trip route planning and travel time estimation (TTE) through Artificial Intelligence (AI). With the increasing complexity of urban transportation systems, traditional navigation methods often struggle to accommodate dynamic user preferences, real-time traffic conditions, and scalability requirements. This study explores the contributions of established AI techniques, including Machine Learning (ML), Reinforcement Learning (RL), and Graph Neural Networks (GNNs), alongside emerging methodologies like Meta-Learning, Explainable AI (XAI), Generative AI, and Federated Learning. In addition to highlighting these innovations, the paper identifies critical challenges such as ethical concerns, computational scalability, and effective data integration, which must be addressed to advance the field. The paper concludes with recommendations for leveraging AI to build efficient, transparent, and sustainable navigation systems.