Abstract:Speaker diarization aims to segment audio recordings into regions corresponding to individual speakers. Although unsupervised speaker diarization is inherently challenging, the prospect of identifying speaker regions without pretraining or weak supervision motivates research on clustering techniques. In this work, we share the notable observation that measuring multiple kernel similarities of speaker embeddings to thereafter craft a sparse graph for spectral clustering in a principled manner is sufficient to achieve state-of-the-art performances in a fully unsupervised setting. Specifically, we consider four polynomial kernels and a degree one arccosine kernel to measure similarities in speaker embeddings, using which sparse graphs are constructed in a principled manner to emphasize local similarities. Experiments show the proposed approach excels in unsupervised speaker diarization over a variety of challenging environments in the DIHARD-III, AMI, and VoxConverse corpora. To encourage further research, our implementations are available at https://github.com/nikhilraghav29/MK-SGC-SC.
Abstract:Clustering speaker embeddings is crucial in speaker diarization but hasn't received as much focus as other components. Moreover, the robustness of speaker diarization across various datasets hasn't been explored when the development and evaluation data are from different domains. To bridge this gap, this study thoroughly examines spectral clustering for both same-domain and cross-domain speaker diarization. Our extensive experiments on two widely used corpora, AMI and DIHARD, reveal the performance trend of speaker diarization in the presence of domain mismatch. We observe that the performance difference between two different domain conditions can be attributed to the role of spectral clustering. In particular, keeping other modules unchanged, we show that differences in optimal tuning parameters as well as speaker count estimation originates due to the mismatch. This study opens several future directions for speaker diarization research.