Abstract:Cyclists prefer to use infrastructure that separates them from motorized traffic. Using a traffic light to segregate car and bike flows, with the addition of bike-specific green phases, is a lightweight and cheap solution that can be deployed dynamically to assess the opportunity of a heavier infrastructure such as a separate bike lane. To compensate for the increased waiting time induced by these new phases, we introduce in this paper a deep reinforcement learning solution that adapts the green phase cycle of a traffic light to the traffic. Vehicle counter data are used to compare the DRL approach with the actuated traffic light control algorithm over whole days. Results show that DRL achieves better minimization of vehicle waiting time at almost all hours. Our DRL approach is also robust to moderate changes in bike traffic. The code of this paper is available at https://github.com/LucasMagnana/A-DRL-solution-to-help-reduce-the-cost-in-waiting-time-of-securing-a-traffic-light-for-cyclists.
Abstract:In this paper, a new practice-ready method for the real-time estimation of traffic conditions and travel times on highways is introduced. First, after a principal component analysis, observation days of a historical dataset are clustered. Two different methods are compared: a Gaussian Mixture Model and a k-means algorithm. The clustering results reveal that congestion maps of days of the same group have substantial similarity in their traffic conditions and dynamic. Such a map is a binary visualization of the congestion propagation on the freeway, giving more importance to the traffic dynamics. Second, a consensus day is identified in each cluster as the most representative day of the community according to the congestion maps. Third, this information obtained from the historical data is used to predict traffic congestion propagation and travel times. Thus, the first measurements of a new day are used to determine which consensual day is the closest to this new day. The past observations recorded for that consensual day are then used to predict future traffic conditions and travel times. This method is tested using ten months of data collected on a French freeway and shows very encouraging results.