AGORA
Abstract:The rapid rise of air pollution events necessitates accurate, real-time monitoring for informed mitigation strategies. Data Assimilation (DA) methods provide promising solutions, but their effectiveness hinges heavily on optimal measurement locations. This paper presents a novel approach for air quality mapping where autonomous drones, guided by a collaborative multi-agent reinforcement learning (MARL) framework, act as airborne detectives. Ditching the limitations of static sensor networks, the drones engage in a synergistic interaction, adapting their flight paths in real time to gather optimal data for Data Assimilation (DA). Our approach employs a tailored reward function with dynamic credit assignment, enabling drones to prioritize informative measurements without requiring unavailable ground truth data, making it practical for real-world deployments. Extensive experiments using a real-world dataset demonstrate that our solution achieves significantly improved pollution estimates, even with limited drone resources or limited prior knowledge of the pollution plume. Beyond air quality, this solution unlocks possibilities for tackling diverse environmental challenges like wildfire detection and management through scalable and autonomous drone cooperation.
Abstract:Cyclists prefer to use infrastructure that separates them from motorized traffic. Using a traffic light to segregate car and bike flows, with the addition of bike-specific green phases, is a lightweight and cheap solution that can be deployed dynamically to assess the opportunity of a heavier infrastructure such as a separate bike lane. To compensate for the increased waiting time induced by these new phases, we introduce in this paper a deep reinforcement learning solution that adapts the green phase cycle of a traffic light to the traffic. Vehicle counter data are used to compare the DRL approach with the actuated traffic light control algorithm over whole days. Results show that DRL achieves better minimization of vehicle waiting time at almost all hours. Our DRL approach is also robust to moderate changes in bike traffic. The code of this paper is available at https://github.com/LucasMagnana/A-DRL-solution-to-help-reduce-the-cost-in-waiting-time-of-securing-a-traffic-light-for-cyclists.