Abstract:Reinforcement learning augmented by the representational power of deep neural networks, has shown promising results on high-dimensional problems, such as game playing and robotic control. However, the sequential nature of these problems poses a fundamental challenge for computational efficiency. Recently, alternative approaches such as evolutionary strategies and deep neuroevolution demonstrated competitive results with faster training time on distributed CPU cores. Here, we report record training times (running at about 1 million frames per second) for Atari 2600 games using deep neuroevolution implemented on distributed FPGAs. Combined hardware implementation of the game console, image pre-processing and the neural network in an optimized pipeline, multiplied with the system level parallelism enabled the acceleration. These results are the first application demonstration on the IBM Neural Computer, which is a custom designed system that consists of 432 Xilinx FPGAs interconnected in a 3D mesh network topology. In addition to high performance, experiments also showed improvement in accuracy for all games compared to the CPU-implementation of the same algorithm.