Chalmers University of Technology
Abstract:Automatically conjecturing useful, interesting and novel lemmas would greatly improve automated reasoning tools and lower the bar for formalizing mathematics in proof assistants. It is however a very challenging task for both neural and symbolic approaches. We present the first steps towards a practical neuro-symbolic lemma conjecturing tool, Lemmanaid, that combines Large Language Models (LLMs) and symbolic methods, and evaluate it on proof libraries for the Isabelle proof assistant. We train an LLM to generate lemma templates that describe the shape of a lemma, and use symbolic methods to fill in the details. We compare Lemmanaid against an LLM trained to generate complete lemma statements as well as previous fully symbolic conjecturing methods. Our results indicate that neural and symbolic techniques are complementary. By leveraging the best of both symbolic and neural methods we can generate useful lemmas for a wide range of input domains, facilitating computer-assisted theory development and formalization.
Abstract:A key component of mathematical reasoning is the ability to formulate interesting conjectures about a problem domain at hand. In this paper, we give a brief overview of a theory exploration system called QuickSpec, which is able to automatically discover interesting conjectures about a given set of functions. QuickSpec works by interleaving term generation with random testing to form candidate conjectures. This is made tractable by starting from small sizes and ensuring that only terms that are irreducible with respect to already discovered conjectures are considered. QuickSpec has been successfully applied to generate lemmas for automated inductive theorem proving as well as to generate specifications of functional programs. We give an overview of typical use-cases of QuickSpec, as well as demonstrating how to easily connect it to a theorem prover of the user's choice.