Abstract:Over the past decade, programmatic advertising has received a great deal of attention in the online advertising industry. A real-time bidding (RTB) system is rapidly becoming the most popular method to buy and sell online advertising impressions. Within the RTB system, demand-side platforms (DSP) aim to spend advertisers' campaign budgets efficiently while maximizing profit, seeking impressions that result in high user responses, such as clicks or installs. In the current study, we investigate the process of predicting a mobile gaming app installation from the point of view of a particular DSP, while paying attention to user privacy, and exploring the trade-off between privacy preservation and model performance. There are multiple levels of potential threats to user privacy, depending on the privacy leaks associated with the data-sharing process, such as data transformation or de-anonymization. To address these concerns, privacy-preserving techniques were proposed, such as cryptographic approaches, for training privacy-aware machine-learning models. However, the ability to train a mobile gaming app installation prediction model without using user-level data, can prevent these threats and protect the users' privacy, even though the model's ability to predict may be impaired. Additionally, current laws might force companies to declare that they are collecting data, and might even give the user the option to opt out of such data collection, which might threaten companies' business models in digital advertising, which are dependent on the collection and use of user-level data. We conclude that privacy-aware models might still preserve significant capabilities, enabling companies to make better decisions, dependent on the privacy-efficacy trade-off utility function of each case.