Abstract:Despite the recent popularity of knowledge graph (KG) related tasks and benchmarks such as KG embeddings, link prediction, entity alignment and evaluation of the reasoning abilities of pretrained language models as KGs, the structure and properties of real KGs are not well studied. In this paper, we perform a large scale comparative study of 29 real KG datasets from diverse domains such as the natural sciences, medicine, and NLP to analyze their properties and structural patterns. Based on our findings, we make several recommendations regarding KG-based model development and evaluation. We believe that the rich structural information contained in KGs can benefit the development of better KG models across fields and we hope this study will contribute to breaking the existing data silos between different areas of research (e.g., ML, NLP, AI for sciences).
Abstract:Generative language models produce highly abstractive outputs by design, in contrast to extractive responses in search engines. Given this characteristic of LLMs and the resulting implications for content Licensing & Attribution, we propose the the so-called Extractive-Abstractive axis for benchmarking generative models and highlight the need for developing corresponding metrics, datasets and annotation guidelines. We limit our discussion to the text modality.
Abstract:Multiresolution Matrix Factorization (MMF) was recently introduced as a method for finding multiscale structure and defining wavelets on graphs/matrices. In this paper we derive pMMF, a parallel algorithm for computing the MMF factorization. Empirically, the running time of pMMF scales linearly in the dimension for sparse matrices. We argue that this makes pMMF a valuable new computational primitive in its own right, and present experiments on using pMMF for two distinct purposes: compressing matrices and preconditioning large sparse linear systems.