Abstract:Graph Neural Networks (GNN) have been extensively used to extract meaningful representations from graph structured data and to perform predictive tasks such as node classification and link prediction. In recent years, there has been a lot of work incorporating edge features along with node features for prediction tasks. One of the main difficulties in using edge features is that they are often handcrafted, hard to get, specific to a particular domain, and may contain redundant information. In this work, we present a framework for creating new edge features, applicable to any domain, via a combination of self-supervised and unsupervised learning. In addition to this, we use Forman-Ricci curvature as an additional edge feature to encapsulate the local geometry of the graph. We then encode our edge features via a Set Transformer and combine them with node features extracted from popular GNN architectures for node classification in an end-to-end training scheme. We validate our work on three biological datasets comprising of single-cell RNA sequencing data of neurological disease, \textit{in vitro} SARS-CoV-2 infection, and human COVID-19 patients. We demonstrate that our method achieves better performance on node classification tasks over baseline Graph Attention Network (GAT) and Graph Convolutional Network (GCN) models. Furthermore, given the attention mechanism on edge and node features, we are able to interpret the cell types and genes that determine the course and severity of COVID-19, contributing to a growing list of potential disease biomarkers and therapeutic targets.
Abstract:Graph Neural Networks (GNN) have been extensively used to extract meaningful representations from graph structured data and to perform predictive tasks such as node classification and link prediction. In recent years, there has been a lot of work incorporating edge features along with node features for prediction tasks. In this work, we present a framework for creating new edge features, via a combination of self-supervised and unsupervised learning which we then use along with node features for node classification tasks. We validate our work on two biological datasets comprising of single-cell RNA sequencing data of \textit{in vitro} SARS-CoV-2 infection and human COVID-19 patients. We demonstrate that our method achieves better performance over baseline Graph Attention Network (GAT) and Graph Convolutional Network (GCN) models. Furthermore, given the attention mechanism on edge and node features, we are able to interpret the cell types and genes that determine the course and severity of COVID-19, contributing to a growing list of potential disease biomarkers and therapeutic targets.
Abstract:Single-cell RNA sequencing (scRNA-seq) has revolutionized biological discovery, providing an unbiased picture of cellular heterogeneity in tissues. While scRNA-seq has been used extensively to provide insight into both healthy systems and diseases, it has not been used for disease prediction or diagnostics. Graph Attention Networks (GAT) have proven to be versatile for a wide range of tasks by learning from both original features and graph structures. Here we present a graph attention model for predicting disease state from single-cell data on a large dataset of Multiple Sclerosis (MS) patients. MS is a disease of the central nervous system that can be difficult to diagnose. We train our model on single-cell data obtained from blood and cerebrospinal fluid (CSF) for a cohort of seven MS patients and six healthy adults (HA), resulting in 66,667 individual cells. We achieve 92 % accuracy in predicting MS, outperforming other state-of-the-art methods such as a graph convolutional network and a random forest classifier. Further, we use the learned graph attention model to get insight into the features (cell types and genes) that are important for this prediction. The graph attention model also allow us to infer a new feature space for the cells that emphasizes the differences between the two conditions. Finally we use the attention weights to learn a new low-dimensional embedding that can be visualized. To the best of our knowledge, this is the first effort to use graph attention, and deep learning in general, to predict disease state from single-cell data. We envision applying this method to single-cell data for other diseases.