Abstract:Claim verification can be a challenging task. In this paper, we present a method to enhance the robustness and reasoning capabilities of automated claim verification through the extraction of short facts from evidence. Our novel approach, FactDetect, leverages Large Language Models (LLMs) to generate concise factual statements from evidence and label these facts based on their semantic relevance to the claim and evidence. The generated facts are then combined with the claim and evidence. To train a lightweight supervised model, we incorporate a fact-detection task into the claim verification process as a multitasking approach to improve both performance and explainability. We also show that augmenting FactDetect in the claim verification prompt enhances performance in zero-shot claim verification using LLMs. Our method demonstrates competitive results in the supervised claim verification model by 15% on the F1 score when evaluated for challenging scientific claim verification datasets. We also demonstrate that FactDetect can be augmented with claim and evidence for zero-shot prompting (AugFactDetect) in LLMs for verdict prediction. We show that AugFactDetect outperforms the baseline with statistical significance on three challenging scientific claim verification datasets with an average of 17.3% performance gain compared to the best performing baselines.
Abstract:Identifying the targets of hate speech is a crucial step in grasping the nature of such speech and, ultimately, in improving the detection of offensive posts on online forums. Much harmful content on online platforms uses implicit language especially when targeting vulnerable and protected groups such as using stereotypical characteristics instead of explicit target names, making it harder to detect and mitigate the language. In this study, we focus on identifying implied targets of hate speech, essential for recognizing subtler hate speech and enhancing the detection of harmful content on digital platforms. We define a new task aimed at identifying the targets even when they are not explicitly stated. To address that task, we collect and annotate target spans in three prominent implicit hate speech datasets: SBIC, DynaHate, and IHC. We call the resulting merged collection Implicit-Target-Span. The collection is achieved using an innovative pooling method with matching scores based on human annotations and Large Language Models (LLMs). Our experiments indicate that Implicit-Target-Span provides a challenging test bed for target span detection methods.