Abstract:Dairy farming consumes a significant amount of energy, making it an energy-intensive sector within agriculture. Integrating renewable energy generation into dairy farming could help address this challenge. Effective battery management is important for integrating renewable energy generation. Managing battery charging and discharging poses significant challenges because of fluctuations in electrical consumption, the intermittent nature of renewable energy generation, and fluctuations in energy prices. Artificial Intelligence (AI) has the potential to significantly improve the use of renewable energy in dairy farming, however, there is limited research conducted in this particular domain. This research considers Ireland as a case study as it works towards attaining its 2030 energy strategy centered on the utilization of renewable sources. This study proposes a Q-learning-based algorithm for scheduling battery charging and discharging in a dairy farm setting. This research also explores the effect of the proposed algorithm by adding wind generation data and considering additional case studies. The proposed algorithm reduces the cost of imported electricity from the grid by 13.41\%, peak demand by 2\%, and 24.49\% when utilizing wind generation. These results underline how reinforcement learning is highly effective in managing batteries in the dairy farming sector.
Abstract:Dairy farming is a particularly energy-intensive part of the agriculture sector. Effective battery management is essential for renewable integration within the agriculture sector. However, controlling battery charging/discharging is a difficult task due to electricity demand variability, stochasticity of renewable generation, and energy price fluctuations. Despite the potential benefits of applying Artificial Intelligence (AI) to renewable energy in the context of dairy farming, there has been limited research in this area. This research is a priority for Ireland as it strives to meet its governmental goals in energy and sustainability. This research paper utilizes Q-learning to learn an effective policy for charging and discharging a battery within a dairy farm setting. The results demonstrate that the developed policy significantly reduces electricity costs compared to the established baseline algorithm. These findings highlight the effectiveness of reinforcement learning for battery management within the dairy farming sector.