Abstract:Humans use their knowledge of common house layouts obtained from previous experiences to predict nearby rooms while navigating in new environments. This greatly helps them navigate previously unseen environments and locate their target room. To provide layout prior knowledge to navigational agents based on common human living spaces, we propose WIN (\textit{W}hat \textit{I}s \textit{N}ear), a commonsense learning model for Vision Language Navigation (VLN) tasks. VLN requires an agent to traverse indoor environments based on descriptive navigational instructions. Unlike existing layout learning works, WIN predicts the local neighborhood map based on prior knowledge of living spaces and current observation, operating on an imagined global map of the entire environment. The model infers neighborhood regions based on visual cues of current observations, navigational history, and layout common sense. We show that local-global planning based on locality knowledge and predicting the indoor layout allows the agent to efficiently select the appropriate action. Specifically, we devised a cross-modal transformer that utilizes this locality prior for decision-making in addition to visual inputs and instructions. Experimental results show that locality learning using WIN provides better generalizability compared to classical VLN agents in unseen environments. Our model performs favorably on standard VLN metrics, with Success Rate 68\% and Success weighted by Path Length 63\% in unseen environments.
Abstract:Radar odometry has been gaining attention in the last decade. It stands as one of the best solutions for robotic state estimation in unfavorable conditions; conditions where other interoceptive and exteroceptive sensors may fall short. Radars are widely adopted, resilient to weather and illumination, and provide Doppler information which make them very attractive for such tasks. This article presents an extensive survey of the latest work on ground-based radar odometry for autonomous robots. It covers technologies, datasets, metrics, and approaches that have been developed in the last decade in addition to in-depth analysis and categorization of the various methods and techniques applied to tackle this problem. This article concludes with challenges and future recommendations to advance the field of radar odometry making it a great starting point for newcomers and a valuable reference for experienced researchers.