Abstract:Image correspondence serves as the backbone for many tasks in robotics, such as visual fusion, localization, and mapping. However, existing correspondence methods do not scale to large multi-robot systems, and they struggle when image features are weak, ambiguous, or evolving. In response, we propose Natural Quick Response codes, or N-QR, which enables rapid and reliable correspondence between large-scale teams of heterogeneous robots. Our method works like a QR code, using keypoint-based alignment, rapid encoding, and error correction via ensembles of image patches of natural patterns. We deploy our algorithm in a production-scale robotic farm, where groups of growing plants must be matched across many robots. We demonstrate superior performance compared to several baselines, obtaining a retrieval accuracy of 88.2%. Our method generalizes to a farm with 100 robots, achieving a 12.5x reduction in bandwidth and a 20.5x speedup. We leverage our method to correspond 700k plants and confirm a link between a robotic seeding policy and germination.
Abstract:In this work, we consider the task of collision-free trajectory planning for connected self-driving vehicles. We specifically consider communication-critical situations--situations where single-agent systems have blindspots that require multi-agent collaboration. To identify such situations, we propose a method which (1) simulates multi-agent perspectives from real self-driving datasets, (2) finds scenarios that are challenging for isolated agents, and (3) augments scenarios with adversarial obstructions. To overcome these challenges, we propose to extend costmap-based trajectory evaluation to a distributed multi-agent setting. We demonstrate that our bandwidth-efficient, uncertainty-aware method reduces collision rates by up to 62.5% compared to single agent baselines.
Abstract:This paper addresses the task of joint multi-agent perception and planning, especially as it relates to the real-world challenge of collision-free navigation for connected self-driving vehicles. For this task, several communication-enabled vehicles must navigate through a busy intersection while avoiding collisions with each other and with obstacles. To this end, this paper proposes a learnable costmap-based planning mechanism, given raw perceptual data, that is (1) distributed, (2) uncertainty-aware, and (3) bandwidth-efficient. Our method produces a costmap and uncertainty-aware entropy map to sort and fuse candidate trajectories as evaluated across multiple-agents. The proposed method demonstrates several favorable performance trends on a suite of open-source overhead datasets as well as within a novel communication-critical simulator. It produces accurate semantic occupancy forecasts as an intermediate perception output, attaining a 72.5% average pixel-wise classification accuracy. By selecting the top trajectory, the multi-agent method scales well with the number of agents, reducing the hard collision rate by up to 57% with eight agents compared to the single-agent version.