Abstract:Despite the inherently fuzzy nature of reconstructions in historical linguistics, most scholars do not represent their uncertainty when proposing proto-forms. With the increasing success of recently proposed approaches to automating certain aspects of the traditional comparative method, the formal representation of proto-forms has also improved. This formalization makes it possible to address both the representation and the computation of uncertainty. Building on recent advances in supervised phonological reconstruction, during which an algorithm learns how to reconstruct words in a given proto-language relying on previously annotated data, and inspired by improved methods for automated word prediction from cognate sets, we present a new framework that allows for the representation of uncertainty in linguistic reconstruction and also includes a workflow for the computation of fuzzy reconstructions from linguistic data.
Abstract:Computational approaches in historical linguistics have been increasingly applied during the past decade and many new methods that implement parts of the traditional comparative method have been proposed. Despite these increased efforts, there are not many easy-to-use and fast approaches for the task of phonological reconstruction. Here we present a new framework that combines state-of-the-art techniques for automated sequence comparison with novel techniques for phonetic alignment analysis and sound correspondence pattern detection to allow for the supervised reconstruction of word forms in ancestral languages. We test the method on a new dataset covering six groups from three different language families. The results show that our method yields promising results while at the same time being not only fast but also easy to apply and expand.