Abstract:When modelling data where the response is dichotomous and highly imbalanced, response-based sampling where a subset of the majority class is retained (i.e., undersampling) is often used to create more balanced training datasets prior to modelling. However, the models fit to this undersampled data, which we refer to as base models, generate predictions that are severely biased. There are several calibration methods that can be used to combat this bias, one of which is Platt's scaling. Here, a logistic regression model is used to model the relationship between the base model's original predictions and the response. Despite its popularity for calibrating models after undersampling, Platt's scaling was not designed for this purpose. Our work presents what we believe is the first detailed study focused on the validity of using Platt's scaling to calibrate models after undersampling. We show analytically, as well as via a simulation study and a case study, that Platt's scaling should not be used for calibration after undersampling without critical thought. If Platt's scaling would have been able to successfully calibrate the base model had it been trained on the entire dataset (i.e., without undersampling), then Platt's scaling might be appropriate for calibration after undersampling. If this is not the case, we recommend a modified version of Platt's scaling that fits a logistic generalized additive model to the logit of the base model's predictions, as it is both theoretically motivated and performed well across the settings considered in our study.
Abstract:Reinforcement learning (RL) has helped improve decision-making in several applications. However, applying traditional RL is challenging in some applications, such as rehabilitation of people with a spinal cord injury (SCI). Among other factors, using RL in this domain is difficult because there are many possible treatments (i.e., large action space) and few patients (i.e., limited training data). Treatments for SCIs have natural groupings, so we propose two approaches to grouping treatments so that an RL agent can learn effectively from limited data. One relies on domain knowledge of SCI rehabilitation and the other learns similarities among treatments using an embedding technique. We then use Fitted Q Iteration to train an agent that learns optimal treatments. Through a simulation study designed to reflect the properties of SCI rehabilitation, we find that both methods can help improve the treatment decisions of physiotherapists, but the approach based on domain knowledge offers better performance. Our findings provide a "proof of concept" that RL can be used to help improve the treatment of those with an SCI and indicates that continued efforts to gather data and apply RL to this domain are worthwhile.