Abstract:The information plane (Tishby et al. arXiv:physics/0004057, Shwartz-Ziv et al. arXiv:1703.00810) has been proposed as an analytical tool for studying the learning dynamics of neural networks. It provides quantitative insight on how the model approaches the learned state by approximating a minimal sufficient statistics. In this paper we extend this tool to the domain of quantum learning models. In a second step, we study how the insight on how much the model compresses the input data (provided by the information plane) can be used to improve a learning algorithm. Specifically, we consider two ways to do so: via a multiplicative regularization of the loss function, or with a compression-gnostic scheduler of the learning rate (for algorithms based on gradient descent). Both ways turn out to be equivalent in our implementation. Finally, we benchmark the proposed learning algorithms on several classification and regression tasks using variational quantum circuits. The results demonstrate an improvement in test accuracy and convergence speed for both synthetic and real-world datasets. Additionally, with one example we analyzed the impact of the proposed modifications on the performances of neural networks in a classification task.
Abstract:Managing the response to natural disasters effectively can considerably mitigate their devastating impact. This work explores the potential of using supervised hybrid quantum machine learning to optimize emergency evacuation plans for cars during natural disasters. The study focuses on earthquake emergencies and models the problem as a dynamic computational graph where an earthquake damages an area of a city. The residents seek to evacuate the city by reaching the exit points where traffic congestion occurs. The situation is modeled as a shortest-path problem on an uncertain and dynamically evolving map. We propose a novel hybrid supervised learning approach and test it on hypothetical situations on a concrete city graph. This approach uses a novel quantum feature-wise linear modulation (FiLM) neural network parallel to a classical FiLM network to imitate Dijkstra's node-wise shortest path algorithm on a deterministic dynamic graph. Adding the quantum neural network in parallel increases the overall model's expressivity by splitting the dataset's harmonic and non-harmonic features between the quantum and classical components. The hybrid supervised learning agent is trained on a dataset of Dijkstra's shortest paths and can successfully learn the navigation task. The hybrid quantum network improves over the purely classical supervised learning approach by 7% in accuracy. We show that the quantum part has a significant contribution of 45.(3)% to the prediction and that the network could be executed on an ion-based quantum computer. The results demonstrate the potential of supervised hybrid quantum machine learning in improving emergency evacuation planning during natural disasters.