Abstract:For the task of image classification, neural networks primarily rely on visual patterns. In robust networks, we would expect for visually similar classes to be represented similarly. We consider the problem of when semantically similar classes are visually dissimilar, and when visual similarity is present among non-similar classes. We propose a data augmentation technique with the goal of better aligning semantically similar classes with arbitrary (non-visual) semantic relationships. We leverage recent work in diffusion-based semantic mixing to generate semantic hybrids of two classes, and these hybrids are added to the training set as augmented data. We evaluate whether the method increases semantic alignment by evaluating model performance on adversarially perturbed data, with the idea that it should be easier for an adversary to switch one class to a similarly represented class. Results demonstrate that there is an increase in alignment of semantically similar classes when using our proposed data augmentation method.
Abstract:Robustness in deep neural networks and machine learning algorithms in general is an open research challenge. In particular, it is difficult to ensure algorithmic performance is maintained on out-of-distribution inputs or anomalous instances that cannot be anticipated at training time. Embodied agents will be deployed in these conditions, and are likely to make incorrect predictions. An agent will be viewed as untrustworthy unless it can maintain its performance in dynamic environments. Most robust training techniques aim to improve model accuracy on perturbed inputs; as an alternate form of robustness, we aim to reduce the severity of mistakes made by neural networks in challenging conditions. We leverage current adversarial training methods to generate targeted adversarial attacks during the training process in order to increase the semantic similarity between a model's predictions and true labels of misclassified instances. Results demonstrate that our approach performs better with respect to mistake severity compared to standard and adversarially trained models. We also find an intriguing role that non-robust features play with regards to semantic similarity.