Abstract:This paper presents Robust samplE-based coVarIance StEering (REVISE), a multi-query algorithm that generates robust belief roadmaps for dynamic systems navigating through spatially dependent disturbances modeled as a Gaussian random field. Our proposed method develops a novel robust sample-based covariance steering edge controller to safely steer a robot between state distributions, satisfying state constraints along the trajectory. Our proposed approach also incorporates an edge rewiring step into the belief roadmap construction process, which provably improves the coverage of the belief roadmap. When compared to state-of-the-art methods, REVISE improves median plan accuracy (as measured by Wasserstein distance between the actual and planned final state distribution) by 10x in multi-query planning and reduces median plan cost (as measured by the largest eigenvalue of the planned state covariance at the goal) by 2.5x in single-query planning for a 6DoF system. We will release our code at https://acl.mit.edu/REVISE/.
Abstract:The paper presents Maximal Covariance Backward Reachable Trees (MAXCOVAR BRT), which is a multi-query algorithm for planning of dynamic systems under stochastic motion uncertainty and constraints on the control input with explicit coverage guarantees. In contrast to existing roadmap-based probabilistic planning methods that sample belief nodes randomly and draw edges between them \cite{csbrm_tro2024}, under control constraints, the reachability of belief nodes needs to be explicitly established and is determined by checking the feasibility of a non-convex program. Moreover, there is no explicit consideration of coverage of the roadmap while adding nodes and edges during the construction procedure for the existing methods. Our contribution is a novel optimization formulation to add nodes and construct the corresponding edge controllers such that the generated roadmap results in provably maximal coverage under control constraints as compared to any other method of adding nodes and edges. We characterize formally the notion of coverage of a roadmap in this stochastic domain via introduction of the h-$\operatorname{BRS}$ (Backward Reachable Set of Distributions) of a tree of distributions under control constraints, and also support our method with extensive simulations on a 6 DoF model.