Abstract:Adversarial attacks against Large Vision-Language Models (LVLMs) are crucial for exposing safety vulnerabilities in modern multimodal systems. Recent attacks based on input transformations, such as random cropping, suggest that spatially localized perturbations can be more effective than global image manipulation. However, randomly cropping the entire image is inherently stochastic and fails to use the limited per-pixel perturbation budget efficiently. We make two key observations: (i) regional attention scores are positively correlated with adversarial loss sensitivity, and (ii) attacking high-attention regions induces a structured redistribution of attention toward subsequent salient regions. Based on these findings, we propose Stage-wise Attention-Guided Attack (SAGA), an attention-guided framework that progressively concentrates perturbations on high-attention regions. SAGA enables more efficient use of constrained perturbation budgets, producing highly imperceptible adversarial examples while consistently achieving state-of-the-art attack success rates across ten LVLMs. The source code is available at https://github.com/jackwaky/SAGA.
Abstract:Distribution shifts are characterized by differences between the training and test data distributions. They can significantly reduce the accuracy of machine learning models deployed in real-world scenarios. This paper explores the distribution shift problem when classifying pollen grains from microscopic images collected in the wild with a low-cost camera sensor. We leverage the domain knowledge that geometric features are highly important for accurate pollen identification and introduce two novel geometric image augmentation techniques to significantly narrow the accuracy gap between the model performance on the train and test datasets. In particular, we show that Tenengrad and ImageToSketch filters are highly effective to balance the shape and texture information while leaving out unimportant details that may confuse the model. Extensive evaluations on various model architectures demonstrate a consistent improvement of the model generalization to field data of up to 14% achieved by the geometric augmentation techniques when compared to a wide range of standard image augmentations. The approach is validated through an ablation study using pollen hydration tests to recover the shape of dry pollen grains. The proposed geometric augmentations also receive the highest scores according to the affinity and diversity measures from the literature.