Abstract:The dramatic increase in consumption of ultra-processed food has been associated with numerous adverse health effects. Given the public health consequences linked to ultra-processed food consumption, it is highly relevant to build computational models to predict the processing of food products. We created a range of machine learning, deep learning, and NLP models to predict the extent of food processing by integrating the FNDDS dataset of food products and their nutrient profiles with their reported NOVA processing level. Starting with the full nutritional panel of 102 features, we further implemented coarse-graining of features to 65 and 13 nutrients by dropping flavonoids and then by considering the 13-nutrient panel of FDA, respectively. LGBM Classifier and Random Forest emerged as the best model for 102 and 65 nutrients, respectively, with an F1-score of 0.9411 and 0.9345 and MCC of 0.8691 and 0.8543. For the 13-nutrient panel, Gradient Boost achieved the best F1-score of 0.9284 and MCC of 0.8425. We also implemented NLP based models, which exhibited state-of-the-art performance. Besides distilling nutrients critical for model performance, we present a user-friendly web server for predicting processing level based on the nutrient panel of a food product: https://cosylab.iiitd.edu.in/food-processing/.
Abstract:People communicate in more than 7,000 languages around the world, with around 780 languages spoken in India alone. Despite this linguistic diversity, research on Sentiment Analysis has predominantly focused on English text data, resulting in a disproportionate availability of sentiment resources for English. This paper examines the performance of transformer models in Sentiment Analysis tasks across multilingual datasets and text that has undergone machine translation. By comparing the effectiveness of these models in different linguistic contexts, we gain insights into their performance variations and potential implications for sentiment analysis across diverse languages. We also discuss the shortcomings and potential for future work towards the end.