nano-Macro Reliability Laboratory
Abstract:Fault diagnosis prevents train disruptions by ensuring the stability and reliability of their transmission systems. Data-driven fault diagnosis models have several advantages over traditional methods in terms of dealing with non-linearity, adaptability, scalability, and automation. However, existing data-driven models are trained on separate transmission components and only consider single faults due to the limitations of existing datasets. These models will perform worse in scenarios where components operate with each other at the same time, affecting each component's vibration signals. To address some of these challenges, we propose a frequency domain representation and a 1-dimensional convolutional neural network for compound fault diagnosis and applied it on the PHM Beijing 2024 dataset, which includes 21 sensor channels, 17 single faults, and 42 compound faults from 4 interacting components, that is, motor, gearbox, left axle box, and right axle box. Our proposed model achieved 97.67% and 93.93% accuracies on the test set with 17 single faults and on the test set with 42 compound faults, respectively.
Abstract:Speech recognition is a key challenge in natural language processing, requiring low latency, efficient computation, and strong generalization for real-time applications. While software-based artificial neural networks (ANNs) excel at this task, they are computationally intensive and depend heavily on data pre-processing. Neuromorphic computing, with its low-latency and energy-efficient advantages, holds promise for audio classification. Memristive nanowire networks, combined with pre-processing techniques like Mel-Frequency Cepstrum Coefficient extraction, have been widely used for associative learning, but such pre-processing can be power-intensive, undermining latency benefits. This study pioneers the use of memristive and spatio-temporal properties of nanowire networks for audio signal classification without pre-processing. A nanowire network simulation is paired with three linear classifiers for 10-class MNIST audio classification and binary speaker generalization tests. The hybrid system achieves significant benefits: excellent data compression with only 3% of nanowire output utilized, a 10-fold reduction in computational latency, and up to 28.5% improved classification accuracy (using a logistic regression classifier). Precision and recall improve by 10% and 17% for multispeaker datasets, and by 24% and 17% for individual speaker datasets, compared to raw data classifiers. This work provides a foundational proof of concept for utilizing memristive nanowire networks (NWN) in edge-computing devices, showcasing their potential for efficient, real-time audio signal processing with reduced computational overhead and power consumption, and enabling the development of advanced neuromorphic computing solutions.