Abstract:Reliability analysis is a formidable task, particularly in systems with a large number of stochastic parameters. Conventional methods for quantifying reliability often rely on extensive simulations or experimental data, which can be costly and time-consuming, especially when dealing with systems governed by complex physical laws which necessitates computationally intensive numerical methods such as finite element or finite volume techniques. On the other hand, surrogate-based methods offer an efficient alternative for computing reliability by approximating the underlying model from limited data. Neural operators have recently emerged as effective surrogates for modelling physical systems governed by partial differential equations. These operators can learn solutions to PDEs for varying inputs and parameters. Here, we investigate the efficacy of the recently developed physics-informed wavelet neural operator in solving reliability analysis problems. In particular, we investigate the possibility of using physics-informed operator for solving high-dimensional reliability analysis problems, while bypassing the need for any simulation. Through four numerical examples, we illustrate that physics-informed operator can seamlessly solve high-dimensional reliability analysis problems with reasonable accuracy, while eliminating the need for running expensive simulations.
Abstract:Neural operators have gained recognition as potent tools for learning solutions of a family of partial differential equations. The state-of-the-art neural operators excel at approximating the functional relationship between input functions and the solution space, potentially reducing computational costs and enabling real-time applications. However, they often fall short when tackling time-dependent problems, particularly in delivering accurate long-term predictions. In this work, we propose "waveformer", a novel operator learning approach for learning solutions of dynamical systems. The proposed waveformer exploits wavelet transform to capture the spatial multi-scale behavior of the solution field and transformers for capturing the long horizon dynamics. We present four numerical examples involving Burgers's equation, KS-equation, Allen Cahn equation, and Navier Stokes equation to illustrate the efficacy of the proposed approach. Results obtained indicate the capability of the proposed waveformer in learning the solution operator and show that the proposed Waveformer can learn the solution operator with high accuracy, outperforming existing state-of-the-art operator learning algorithms by up to an order, with its advantage particularly visible in the extrapolation region