Picture for Murat Kuzlu

Murat Kuzlu

BERT4MIMO: A Foundation Model using BERT Architecture for Massive MIMO Channel State Information Prediction

Add code
Jan 03, 2025
Viaarxiv icon

Improving Medical Diagnostics with Vision-Language Models: Convex Hull-Based Uncertainty Analysis

Add code
Nov 24, 2024
Viaarxiv icon

Neural Networks Meet Elliptic Curve Cryptography: A Novel Approach to Secure Communication

Add code
Jul 11, 2024
Figure 1 for Neural Networks Meet Elliptic Curve Cryptography: A Novel Approach to Secure Communication
Figure 2 for Neural Networks Meet Elliptic Curve Cryptography: A Novel Approach to Secure Communication
Figure 3 for Neural Networks Meet Elliptic Curve Cryptography: A Novel Approach to Secure Communication
Figure 4 for Neural Networks Meet Elliptic Curve Cryptography: A Novel Approach to Secure Communication
Viaarxiv icon

Uncertainty Quantification in Large Language Models Through Convex Hull Analysis

Add code
Jun 28, 2024
Viaarxiv icon

Mitigating Attacks on Artificial Intelligence-based Spectrum Sensing for Cellular Network Signals

Add code
Sep 27, 2022
Figure 1 for Mitigating Attacks on Artificial Intelligence-based Spectrum Sensing for Cellular Network Signals
Figure 2 for Mitigating Attacks on Artificial Intelligence-based Spectrum Sensing for Cellular Network Signals
Figure 3 for Mitigating Attacks on Artificial Intelligence-based Spectrum Sensing for Cellular Network Signals
Figure 4 for Mitigating Attacks on Artificial Intelligence-based Spectrum Sensing for Cellular Network Signals
Viaarxiv icon

Defensive Distillation based Adversarial Attacks Mitigation Method for Channel Estimation using Deep Learning Models in Next-Generation Wireless Networks

Add code
Aug 12, 2022
Figure 1 for Defensive Distillation based Adversarial Attacks Mitigation Method for Channel Estimation using Deep Learning Models in Next-Generation Wireless Networks
Figure 2 for Defensive Distillation based Adversarial Attacks Mitigation Method for Channel Estimation using Deep Learning Models in Next-Generation Wireless Networks
Figure 3 for Defensive Distillation based Adversarial Attacks Mitigation Method for Channel Estimation using Deep Learning Models in Next-Generation Wireless Networks
Figure 4 for Defensive Distillation based Adversarial Attacks Mitigation Method for Channel Estimation using Deep Learning Models in Next-Generation Wireless Networks
Viaarxiv icon

Homomorphic Encryption and Federated Learning based Privacy-Preserving CNN Training: COVID-19 Detection Use-Case

Add code
Apr 16, 2022
Figure 1 for Homomorphic Encryption and Federated Learning based Privacy-Preserving CNN Training: COVID-19 Detection Use-Case
Figure 2 for Homomorphic Encryption and Federated Learning based Privacy-Preserving CNN Training: COVID-19 Detection Use-Case
Figure 3 for Homomorphic Encryption and Federated Learning based Privacy-Preserving CNN Training: COVID-19 Detection Use-Case
Figure 4 for Homomorphic Encryption and Federated Learning based Privacy-Preserving CNN Training: COVID-19 Detection Use-Case
Viaarxiv icon

The Adversarial Security Mitigations of mmWave Beamforming Prediction Models using Defensive Distillation and Adversarial Retraining

Add code
Feb 16, 2022
Figure 1 for The Adversarial Security Mitigations of mmWave Beamforming Prediction Models using Defensive Distillation and Adversarial Retraining
Figure 2 for The Adversarial Security Mitigations of mmWave Beamforming Prediction Models using Defensive Distillation and Adversarial Retraining
Figure 3 for The Adversarial Security Mitigations of mmWave Beamforming Prediction Models using Defensive Distillation and Adversarial Retraining
Figure 4 for The Adversarial Security Mitigations of mmWave Beamforming Prediction Models using Defensive Distillation and Adversarial Retraining
Viaarxiv icon

Security Concerns on Machine Learning Solutions for 6G Networks in mmWave Beam Prediction

Add code
May 09, 2021
Figure 1 for Security Concerns on Machine Learning Solutions for 6G Networks in mmWave Beam Prediction
Figure 2 for Security Concerns on Machine Learning Solutions for 6G Networks in mmWave Beam Prediction
Figure 3 for Security Concerns on Machine Learning Solutions for 6G Networks in mmWave Beam Prediction
Figure 4 for Security Concerns on Machine Learning Solutions for 6G Networks in mmWave Beam Prediction
Viaarxiv icon

Internet of Predictable Things (IoPT) Framework to Increase Cyber-Physical System Resiliency

Add code
Jan 19, 2021
Figure 1 for Internet of Predictable Things (IoPT) Framework to Increase Cyber-Physical System Resiliency
Figure 2 for Internet of Predictable Things (IoPT) Framework to Increase Cyber-Physical System Resiliency
Figure 3 for Internet of Predictable Things (IoPT) Framework to Increase Cyber-Physical System Resiliency
Figure 4 for Internet of Predictable Things (IoPT) Framework to Increase Cyber-Physical System Resiliency
Viaarxiv icon