Abstract:Tactile sensing represents a crucial technique that can enhance the performance of robotic manipulators in various tasks. This work presents a novel bioinspired neuromorphic vision-based tactile sensor that uses an event-based camera to quickly capture and convey information about the interactions between robotic manipulators and their environment. The camera in the sensor observes the deformation of a flexible skin manufactured from a cheap and accessible 3D printed material, whereas a 3D printed rigid casing houses the components of the sensor together. The sensor is tested in a grasping stage classification task involving several objects using a data-driven learning-based approach. The results show that the proposed approach enables the sensor to detect pressing and slip incidents within a speed of 2 ms. The fast tactile perception properties of the proposed sensor makes it an ideal candidate for safe grasping of different objects in industries that involve high-speed pick-and-place operations.