Abstract:The condition of a building is an important factor for real estate valuation. Currently, the estimation of condition is determined by real estate appraisers which makes it subjective to a certain degree. We propose a novel vision-based approach for the assessment of the building condition from exterior views of the building. To this end, we develop a multi-scale patch-based pattern extraction approach and combine it with convolutional neural networks to estimate building condition from visual clues. Our evaluation shows that visually estimated building condition can serve as a proxy for condition estimates by appraisers.
Abstract:We present a first method for the automated age estimation of buildings from unconstrained photographs. To this end, we propose a two-stage approach that firstly learns characteristic visual patterns for different building epochs at patch-level and then globally aggregates patch-level age estimates over the building. We compile evaluation datasets from different sources and perform an detailed evaluation of our approach, its sensitivity to parameters, and the capabilities of the employed deep networks to learn characteristic visual age-related patterns. Results show that our approach is able to estimate building age at a surprisingly high level that even outperforms human evaluators and thereby sets a new performance baseline. This work represents a first step towards the automated assessment of building parameters for automated price prediction.