Abstract:The exponential growth of IoT networks necessitates a paradigm shift towards architectures that offer high flexibility and learning capabilities while maintaining low energy consumption, minimal communication overhead, and low latency. Traditional IoT systems, particularly when integrated with machine learning approaches, often suffer from high communication overhead and significant energy consumption. This work addresses these challenges by proposing a neuromorphic architecture inspired by biological systems. To illustrate the practical application of our proposed architecture, we present a case study focusing on water management in the Carinthian community of Neuhaus. Preliminary results regarding water consumption prediction and anomaly detection in this community are presented. We also introduce a novel neuromorphic IoT architecture that integrates biological principles into the design of IoT systems. This architecture is specifically tailored for edge computing scenarios, where low power and high efficiency are crucial. Our approach leverages the inherent advantages of neuromorphic computing, such as asynchronous processing and event-driven communication, to create an IoT framework that is both energy-efficient and responsive. This case study demonstrates how the neuromorphic IoT architecture can be deployed in a real-world scenario, highlighting its benefits in terms of energy savings, reduced communication overhead, and improved system responsiveness.
Abstract:Dysgraphia, a handwriting learning disability, has a serious negative impact on children's academic results, daily life and overall wellbeing. Early detection of dysgraphia allows for an early start of a targeted intervention. Several studies have investigated dysgraphia detection by machine learning algorithms using a digital tablet. However, these studies deployed classical machine learning algorithms with manual feature extraction and selection as well as binary classification: either dysgraphia or no dysgraphia. In this work, we investigated fine grading of handwriting capabilities by predicting SEMS score (between 0 and 12) with deep learning. Our approach provide accuracy more than 99% and root mean square error lower than one, with automatic instead of manual feature extraction and selection. Furthermore, we used smart pen called SensoGrip, a pen equipped with sensors to capture handwriting dynamics, instead of a tablet, enabling writing evaluation in more realistic scenarios.
Abstract:Distributed Acoustic Sensing (DAS) using fiber optic cables is a promising new technology for pipeline monitoring and protection. In this work, we applied and compared two approaches for event detection using DAS: Classic machine learning approach and the approach based on image processing and deep learning. Although with both approaches acceptable performance can be achieved, the preliminary results show that image based deep learning is more promising approach, offering six times lower event detection delay and twelve times lower execution time.