Abstract:Climate change poses critical challenges globally, disproportionately affecting low-income countries that often lack resources and linguistic representation on the international stage. Despite Bangladesh's status as one of the most vulnerable nations to climate impacts, research gaps persist in Bengali-language studies related to climate change and NLP. To address this disparity, we introduce Dhoroni, a novel Bengali (Bangla) climate change and environmental news dataset, comprising a 2300 annotated Bangla news articles, offering multiple perspectives such as political influence, scientific/statistical data, authenticity, stance detection, and stakeholder involvement. Furthermore, we present an in-depth exploratory analysis of Dhoroni and introduce BanglaBERT-Dhoroni family, a novel baseline model family for climate and environmental opinion detection in Bangla, fine-tuned on our dataset. This research contributes significantly to enhancing accessibility and analysis of climate discourse in Bengali (Bangla), addressing crucial communication and research gaps in climate-impacted regions like Bangladesh with 180 million people.
Abstract:Purpose: Bangladesh's legal system struggles with major challenges like delays, complexity, high costs, and millions of unresolved cases, which deter many from pursuing legal action due to lack of knowledge or financial constraints. This research seeks to develop a specialized Large Language Model (LLM) to assist in the Bangladeshi legal system. Methods: We created UKIL-DB-EN, an English corpus of Bangladeshi legal documents, by collecting and scraping data on various legal acts. We fine-tuned the GPT-2 model on this dataset to develop GPT2-UKIL-EN, an LLM focused on providing legal assistance in English. Results: The model was rigorously evaluated using semantic assessments, including case studies supported by expert opinions. The evaluation provided promising results, demonstrating the potential for the model to assist in legal matters within Bangladesh. Conclusion: Our work represents the first structured effort toward building an AI-based legal assistant for Bangladesh. While the results are encouraging, further refinements are necessary to improve the model's accuracy, credibility, and safety. This is a significant step toward creating a legal AI capable of serving the needs of a population of 180 million.
Abstract:While Large Language Models (LLM) have created a massive technological impact in the past decade, allowing for human-enabled applications, they can produce output that contains stereotypes and biases, especially when using low-resource languages. This can be of great ethical concern when dealing with sensitive topics such as religion. As a means toward making LLMS more fair, we explore bias from a religious perspective in Bengali, focusing specifically on two main religious dialects: Hindu and Muslim-majority dialects. Here, we perform different experiments and audit showing the comparative analysis of different sentences using three commonly used LLMs: ChatGPT, Gemini, and Microsoft Copilot, pertaining to the Hindu and Muslim dialects of specific words and showcasing which ones catch the social biases and which do not. Furthermore, we analyze our findings and relate them to potential reasons and evaluation perspectives, considering their global impact with over 300 million speakers worldwide. With this work, we hope to establish the rigor for creating more fairness in LLMs, as these are widely used as creative writing agents.