Abstract:Generating music is an interesting and challenging problem in the field of machine learning. Mimicking human creativity has been popular in recent years, especially in the field of computer vision and image processing. With the advent of GANs, it is possible to generate new similar images, based on trained data. But this cannot be done for music similarly, as music has an extra temporal dimension. So it is necessary to understand how music is represented in digital form. When building models that perform this generative task, the learning and generation part is done in some high-level representation such as MIDI (Musical Instrument Digital Interface) or scores. This paper proposes a bi-directional LSTM (Long short-term memory) model with attention mechanism capable of generating similar type of music based on MIDI data. The music generated by the model follows the theme/style of the music the model is trained on. Also, due to the nature of MIDI, the tempo, instrument, and other parameters can be defined, and changed, post generation.
Abstract:We present a new facial recognition system, capable of identifying a person, provided their likeness has been previously stored in the system, in real time. The system is based on storing and comparing facial embeddings of the subject, and identifying them later within a live video feed. This system is highly accurate, and is able to tag people with their ID in real time. It is able to do so, even when using a database containing thousands of facial embeddings, by using a parallelized searching technique. This makes the system quite fast and allows it to be highly scalable.