Abstract:We propose a decomposition of the max-min fair curriculum-based course timetabling (MMF-CB-CTT) problem. The decomposition models the room assignment subproblem as a generalized lexicographic bottleneck optimization problem (LBOP). We show that the generalized LBOP can be solved efficiently if the corresponding sum optimization problem can be solved efficiently. As a consequence, the room assignment subproblem of the MMF-CB-CTT problem can be solved efficiently. We use this insight to improve a previously proposed heuristic algorithm for the MMF-CB-CTT problem. Our experimental results indicate that using the new decomposition improves the performance of the algorithm on most of the 21 ITC2007 test instances with respect to the quality of the best solution found. Furthermore, we introduce a measure of the quality of a solution to a max-min fair optimization problem. This measure helps to overcome some limitations imposed by the qualitative nature of max-min fairness and aids the statistical evaluation of the performance of randomized algorithms for such problems. We use this measure to show that using the new decomposition the algorithm outperforms the original one on most instances with respect to the average solution quality.
Abstract:We consider the problem of creating fair course timetables in the setting of a university. Our motivation is to improve the overall satisfaction of individuals concerned (students, teachers, etc.) by providing a fair timetable to them. The central idea is that undesirable arrangements in the course timetable, i.e., violations of soft constraints, should be distributed in a fair way among the individuals. We propose two formulations for the fair course timetabling problem that are based on max-min fairness and Jain's fairness index, respectively. Furthermore, we present and experimentally evaluate an optimization algorithm based on simulated annealing for solving max-min fair course timetabling problems. The new contribution is concerned with measuring the energy difference between two timetables, i.e., how much worse a timetable is compared to another timetable with respect to max-min fairness. We introduce three different energy difference measures and evaluate their impact on the overall algorithm performance. The second proposed problem formulation focuses on the tradeoff between fairness and the total amount of soft constraint violations. Our experimental evaluation shows that the known best solutions to the ITC2007 curriculum-based course timetabling instances are quite fair with respect to Jain's fairness index. However, the experiments also show that the fairness can be improved further for only a rather small increase in the total amount of soft constraint violations.