Abstract:Dynamic link prediction is an important problem considered by many recent works proposing various approaches for learning temporal edge patterns. To assess their efficacy, models are evaluated on publicly available benchmark datasets involving continuous-time and discrete-time temporal graphs. However, as we show in this work, the suitability of common batch-oriented evaluation depends on the datasets' characteristics, which can cause two issues: First, for continuous-time temporal graphs, fixed-size batches create time windows with different durations, resulting in an inconsistent dynamic link prediction task. Second, for discrete-time temporal graphs, the sequence of batches can additionally introduce temporal dependencies that are not present in the data. In this work, we empirically show that this common evaluation approach leads to skewed model performance and hinders the fair comparison of methods. We mitigate this problem by reformulating dynamic link prediction as a link forecasting task that better accounts for temporal information present in the data. We provide implementations of our new evaluation method for commonly used graph learning frameworks.
Abstract:Many Graph Neural Networks (GNNs) add self-loops to a graph to include feature information about a node itself at each layer. However, if the GNN consists of more than one layer, this information can return to its origin via cycles in the graph topology. Intuition suggests that this "backflow" of information should be larger in graphs with self-loops compared to graphs without. In this work, we counter this intuition and show that for certain GNN architectures, the information a node gains from itself can be smaller in graphs with self-loops compared to the same graphs without. We adopt an analytical approach for the study of statistical graph ensembles with a given degree sequence and show that this phenomenon, which we call the self-loop paradox, can depend both on the number of GNN layers $k$ and whether $k$ is even or odd. We experimentally validate our theoretical findings in a synthetic node classification task and investigate its practical relevance in 23 real-world graphs.