Abstract:Speech rate has been shown to vary across social categories such as gender, age, and dialect, while also being conditioned by properties of speech planning. The effect of utterance length, where speech rate is faster and less variable for longer utterances, has also been shown to reduce the role of social factors once it has been accounted for, leaving unclear the relationship between social factors and speech production in conditioning speech rate. Through modelling of speech rate across 13 English speech corpora, it is found that utterance length has the largest effect on speech rate, though this effect itself varies little across corpora and speakers. While age and gender also modulate speech rate, their effects are much smaller in magnitude. These findings suggest utterance length effects may be conditioned by articulatory and perceptual constraints, and that social influences on speech rate should be interpreted in the broader context of how speech rate variation is structured.
Abstract:Phonetic production bias is the external force most commonly invoked in computational models of sound change, despite the fact that it is not responsible for all, or even most, sound changes. Furthermore, the existence of production bias alone cannot account for how changes do or do not propagate throughout a speech community. While many other factors have been invoked by (socio)phoneticians, including but not limited to contact (between subpopulations) and differences in social evaluation (of variants, groups, or individuals), these are not typically modeled in computational simulations of sound change. In this paper, we consider whether production biases have a unique dynamics in terms of how they impact the population-level spread of change in a setting where agents learn from multiple teachers. We show that, while the dynamics conditioned by production bias are not unique, it is not the case that all perturbing forces have the same dynamics: in particular, if social weight is a function of individual teachers and the correlation between a teacher's social weight and the extent to which they realize a production bias is weak, change is unlikely to propagate. Nevertheless, it remains the case that changes initiated from different sources may display a similar dynamics. A more nuanced understanding of how population structure interacts with individual biases can thus provide a (partial) solution to the `non-phonologization problem'.
Abstract:This paper introduces a novel method for quantifying vowel overlap. There is a tension in previous work between using multivariate measures, such as those derived from empirical distributions, and the ability to control for unbalanced data and extraneous factors, as is possible when using fitted model parameters. The method presented here resolves this tension by jointly modelling all acoustic dimensions of interest and by simulating distributions from the model to compute a measure of vowel overlap. An additional benefit of this method is that computation of uncertainty becomes straightforward. We evaluate this method on corpus speech data targeting the PIN-PEN merger in four dialects of English and find that using modelled distributions to calculate Bhattacharyya affinity substantially improves results compared to empirical distributions, while the difference between multivariate and univariate modelling is subtle.
Abstract:It has been claimed that within a language, morphologically irregular words are more likely to be phonotactically simple and morphologically regular words are more likely to be phonotactically complex. This inverse correlation has been demonstrated in English for a small sample of words, but has yet to be shown for a larger sample of languages. Furthermore, frequency and word length are known to influence both phonotactic complexity and morphological irregularity, and they may be confounding factors in this relationship. Therefore, we examine the relationships between all pairs of these four variables both to assess the robustness of previous findings using improved methodology and as a step towards understanding the underlying causal relationship. Using information-theoretic measures of phonotactic complexity and morphological irregularity (Pimentel et al., 2020; Wu et al., 2019) on 25 languages from UniMorph, we find that there is evidence of a positive relationship between morphological irregularity and phonotactic complexity within languages on average, although the direction varies within individual languages. We also find weak evidence of a negative relationship between word length and morphological irregularity that had not been previously identified, and that some existing findings about the relationships between these four variables are not as robust as previously thought.
Abstract:Why do human languages change at some times, and not others? We address this longstanding question from a computational perspective, focusing on the case of sound change. Sound change arises from the pronunciation variability ubiquitous in every speech community, but most such variability does not lead to change. Hence, an adequate model must allow for stability as well as change. Existing theories of sound change tend to emphasize factors at the level of individual learners promoting one outcome or the other, such as channel bias (which favors change) or inductive bias (which favors stability). Here, we consider how the interaction of these biases can lead to both stability and change in a population setting. We find that population structure itself can act as a source of stability, but that both stability and change are possible only when both types of bias are active, suggesting that it is possible to understand why sound change occurs at some times and not others as the population-level result of the interplay between forces promoting each outcome in individual speakers. In addition, if it is assumed that learners learn from two or more teachers, the transition from stability to change is marked by a phase transition, consistent with the abrupt transitions seen in many empirical cases of sound change. The predictions of multiple-teacher models thus match empirical cases of sound change better than the predictions of single-teacher models, underscoring the importance of modeling language change in a population setting.