Abstract:The sixth-generation (6G) cellular technology will be deployed with a key feature of Integrated Sensing and Communication (ISAC), allowing the cellular network to map the environment through radar sensing on top of providing communication services. In this regard, the entire network can be considered as a sensor with a broader Field of View (FoV) of the environment, assisting in both the positioning of active and detection of passive targets. On the other hand, the non-3GPP sensors available on the target can provide additional information specific to the target that can be beneficially combined with ISAC sensing information to enhance the overall achievable positioning accuracy. In this paper, we first study the performance of the ISAC system in terms of its achievable accuracy in positioning the mobile target in an indoor scenario. Second, we study the performance gain achieved in the ISAC positioning accuracy after fusing the information from the target's non-3GPP sensors. To this end, we propose a novel data fusion solution based on the deep learning framework to fuse the information from ISAC and non-3GPP sensors. We validate our proposed data fusion and positioning solution with a real-world ISAC Proof-of-Concept (PoC) as the wireless infrastructure, an Automated Guided Vehicle (AGV) as the target, and the Inertial Measurement Unit (IMU) sensor on the target as the non-3GPP sensor. The experimental results show that our proposed solution achieves an average positioning error of $3~\textrm{cm}$, outperforming the considered baselines.