Abstract:Data augmentation can significantly enhance the performance of machine learning tasks by addressing data scarcity and improving generalization. However, generating time series data presents unique challenges. A model must not only learn a probability distribution that reflects the real data distribution but also capture the conditional distribution at each time step to preserve the inherent temporal dependencies. To address these challenges, we introduce AVATAR, a framework that combines Adversarial Autoencoders (AAE) with Autoregressive Learning to achieve both objectives. Specifically, our technique integrates the autoencoder with a supervisor and introduces a novel supervised loss to assist the decoder in learning the temporal dynamics of time series data. Additionally, we propose another innovative loss function, termed distribution loss, to guide the encoder in more efficiently aligning the aggregated posterior of the autoencoder's latent representation with a prior Gaussian distribution. Furthermore, our framework employs a joint training mechanism to simultaneously train all networks using a combined loss, thereby fulfilling the dual objectives of time series generation. We evaluate our technique across a variety of time series datasets with diverse characteristics. Our experiments demonstrate significant improvements in both the quality and practical utility of the generated data, as assessed by various qualitative and quantitative metrics.
Abstract:Current Generative Adversarial Network (GAN)-based approaches for time series generation face challenges such as suboptimal convergence, information loss in embedding spaces, and instability. To overcome these challenges, we introduce an advanced framework that integrates the advantages of an autoencoder-generated embedding space with the adversarial training dynamics of GANs. This method employs two discriminators: one to specifically guide the generator and another to refine both the autoencoder's and generator's output. Additionally, our framework incorporates a novel autoencoder-based loss function and supervision from a teacher-forcing supervisor network, which captures the stepwise conditional distributions of the data. The generator operates within the latent space, while the two discriminators work on latent and feature spaces separately, providing crucial feedback to both the generator and the autoencoder. By leveraging this dual-discriminator approach, we minimize information loss in the embedding space. Through joint training, our framework excels at generating high-fidelity time series data, consistently outperforming existing state-of-the-art benchmarks both qualitatively and quantitatively across a range of real and synthetic multivariate time series datasets.
Abstract:Generating time series data using Generative Adversarial Networks (GANs) presents several prevalent challenges, such as slow convergence, information loss in embedding spaces, instability, and performance variability depending on the series length. To tackle these obstacles, we introduce a robust framework aimed at addressing and mitigating these issues effectively. This advanced framework integrates the benefits of an Autoencoder-generated embedding space with the adversarial training dynamics of GANs. This framework benefits from a time series-based loss function and oversight from a supervisory network, both of which capture the stepwise conditional distributions of the data effectively. The generator functions within the latent space, while the discriminator offers essential feedback based on the feature space. Moreover, we introduce an early generation algorithm and an improved neural network architecture to enhance stability and ensure effective generalization across both short and long time series. Through joint training, our framework consistently outperforms existing benchmarks, generating high-quality time series data across a range of real and synthetic datasets with diverse characteristics.
Abstract:Accurate solar flare prediction is crucial due to the significant risks that intense solar flares pose to astronauts, space equipment, and satellite communication systems. Our research enhances solar flare prediction by utilizing advanced data preprocessing and classification methods on a multivariate time series-based dataset of photospheric magnetic field parameters. First, our study employs a novel preprocessing pipeline that includes missing value imputation, normalization, balanced sampling, near decision boundary sample removal, and feature selection to significantly boost prediction accuracy. Second, we integrate contrastive learning with a GRU regression model to develop a novel classifier, termed ContReg, which employs dual learning methodologies, thereby further enhancing prediction performance. To validate the effectiveness of our preprocessing pipeline, we compare and demonstrate the performance gain of each step, and to demonstrate the efficacy of the ContReg classifier, we compare its performance to that of sequence-based deep learning architectures, machine learning models, and findings from previous studies. Our results illustrate exceptional True Skill Statistic (TSS) scores, surpassing previous methods and highlighting the critical role of precise data preprocessing and classifier development in time series-based solar flare prediction.