Abstract:This study focuses on a multi-user massive multiple-input multiple-output (MU-mMIMO) system by incorporating an unmanned aerial vehicle (UAV) as a decode-and-forward (DF) relay between the base station (BS) and multiple Internet-of-Things (IoT) devices. Our primary objective is to maximize the overall achievable rate (AR) by introducing a novel framework that integrates joint hybrid beamforming (HBF) and UAV localization in dynamic MU-mMIMO IoT systems. Particularly, HBF stages for BS and UAV are designed by leveraging slow time-varying angular information, whereas a deep reinforcement learning (RL) algorithm, namely deep deterministic policy gradient (DDPG) with continuous action space, is developed to train the UAV for its deployment. By using a customized reward function, the RL agent learns an optimal UAV deployment policy capable of adapting to both static and dynamic environments. The illustrative results show that the proposed DDPG-based UAV deployment (DDPG-UD) can achieve approximately 99.5% of the sum-rate capacity achieved by particle swarm optimization (PSO)-based UAV deployment (PSO-UD), while requiring a significantly reduced runtime at approximately 68.50% of that needed by PSO-UD, offering an efficient solution in dynamic MU-mMIMO environments.
Abstract:This study considers a UAV-assisted multi-user massive multiple-input multiple-output (MU-mMIMO) systems, where a decode-and-forward (DF) relay in the form of an unmanned aerial vehicle (UAV) facilitates the transmission of multiple data streams from a base station (BS) to multiple Internet-of-Things (IoT) users. A joint optimization problem of hybrid beamforming (HBF), UAV relay positioning, and power allocation (PA) to multiple IoT users to maximize the total achievable rate (AR) is investigated. The study adopts a geometry-based millimeter-wave (mmWave) channel model for both links and proposes three different swarm intelligence (SI)-based algorithmic solutions to optimize: 1) UAV location with equal PA; 2) PA with fixed UAV location; and 3) joint PA with UAV deployment. The radio frequency (RF) stages are designed to reduce the number of RF chains based on the slow time-varying angular information, while the baseband (BB) stages are designed using the reduced-dimension effective channel matrices. Then, a novel deep learning (DL)-based low-complexity joint hybrid beamforming, UAV location and power allocation optimization scheme (J-HBF-DLLPA) is proposed via fully-connected deep neural network (DNN), consisting of an offline training phase, and an online prediction of UAV location and optimal power values for maximizing the AR. The illustrative results show that the proposed algorithmic solutions can attain higher capacity and reduce average delay for delay-constrained transmissions in a UAV-assisted MU-mMIMO IoT systems. Additionally, the proposed J-HBF-DLLPA can closely approach the optimal capacity while significantly reducing the runtime by 99%, which makes the DL-based solution a promising implementation for real-time online applications in UAV-assisted MU-mMIMO IoT systems.