Abstract:Developing a reliable sound detection and recognition system offers many benefits and has many useful applications in different industries. This paper examines the difficulties that exist when attempting to perform sound classification as it relates to respiratory disease classification. Some methods which have been employed such as independent component analysis and blind source separation are examined. Finally, an examination on the use of deep learning and long short-term memory networks is performed in order to identify how such a task can be implemented.
Abstract:In this paper, we introduce a deep learning model to classify children as either healthy or potentially autistic with 94.6% accuracy using Deep Learning. Autistic patients struggle with social skills, repetitive behaviors, and communication, both verbal and nonverbal. Although the disease is considered to be genetic, the highest rates of accurate diagnosis occur when the child is tested on behavioral characteristics and facial features. Patients have a common pattern of distinct facial deformities, allowing researchers to analyze only an image of the child to determine if the child has the disease. While there are other techniques and models used for facial analysis and autism classification on their own, our proposal bridges these two ideas allowing classification in a cheaper, more efficient method. Our deep learning model uses MobileNet and two dense layers in order to perform feature extraction and image classification. The model is trained and tested using 3,014 images, evenly split between children with autism and children without it. 90% of the data is used for training, and 10% is used for testing. Based on our accuracy, we propose that the diagnosis of autism can be done effectively using only a picture. Additionally, there may be other diseases that are similarly diagnosable.
Abstract:Currently, strokes are the leading cause of adult disability in the United States. Traditional treatment and rehabilitation options such as physical therapy and tissue plasminogen activator are limited in their effectiveness and ability to restore mobility and function to the patient. As a result, there exists an opportunity to greatly improve the treatment for strokes. Machine learning, specifically techniques that utilize Brain-Computer Interfaces (BCIs) to help the patient either restore neurologic pathways or effectively communicate with an electronic prosthetic, show promising results when applied to both stroke diagnosis and rehabilitation. In this review, sources that design and implement BCIs for treatment of stroke patients are evaluated and categorized based on their successful applications for stroke diagnosis or stroke rehabilitation. The various machine learning techniques and algorithms that are addressed and combined with BCI technology show that the use of BCIs for stroke treatment is a promising and rapidly expanding field.
Abstract:Developing a Brain-Computer Interface~(BCI) for seizure prediction can help epileptic patients have a better quality of life. However, there are many difficulties and challenges in developing such a system as a real-life support for patients. Because of the nonstationary nature of EEG signals, normal and seizure patterns vary across different patients. Thus, finding a group of manually extracted features for the prediction task is not practical. Moreover, when using implanted electrodes for brain recording massive amounts of data are produced. This big data calls for the need for safe storage and high computational resources for real-time processing. To address these challenges, a cloud-based BCI system for the analysis of this big EEG data is presented. First, a dimensionality-reduction technique is developed to increase classification accuracy as well as to decrease the communication bandwidth and computation time. Second, following a deep-learning approach, a stacked autoencoder is trained in two steps for unsupervised feature extraction and classification. Third, a cloud-computing solution is proposed for real-time analysis of big EEG data. The results on a benchmark clinical dataset illustrate the superiority of the proposed patient-specific BCI as an alternative method and its expected usefulness in real-life support of epilepsy patients.
Abstract:The hippocampus is a seminal structure in the most common surgically-treated form of epilepsy. Accurate segmentation of the hippocampus aids in establishing asymmetry regarding size and signal characteristics in order to disclose the likely site of epileptogenicity. With sufficient refinement, it may ultimately aid in the avoidance of invasive monitoring with its expense and risk for the patient. To this end, a reliable and consistent method for segmentation of the hippocampus from magnetic resonance imaging (MRI) is needed. In this work, we present a systematic and statistical analysis approach for evaluation of automated segmentation methods in order to establish one that reliably approximates the results achieved by manual tracing of the hippocampus.