



Abstract:Anomaly detection or outlier is one of the challenging subjects in unsupervised learning . This paper is introduced a student-teacher framework for anomaly detection that its teacher network is enhanced for achieving high-performance metrics . For this purpose , we first pre-train the ResNet-18 network on the ImageNet and then fine-tune it on the MVTech-AD dataset . Experiment results on the image-level and pixel-level demonstrate that this idea has achieved better metrics than the previous methods . Our model , Enhanced Teacher for Student-Teacher Feature Pyramid (ET-STPM), achieved 0.971 mean accuracy on the image-level and 0.977 mean accuracy on the pixel-level for anomaly detection.




Abstract:The Internet of Things (IoT) is a concept by which objects find identity and can communicate with each other in a network. One of the applications of the IoT is in the field of medicine, which is called the Internet of Medical Things (IoMT). Acute Lymphocytic Leukemia (ALL) is a type of cancer categorized as a hematic disease. It usually begins in the bone marrow due to the overproduction of immature White Blood Cells (WBCs or leukocytes). Since it has a high rate of spread to other body organs, it is a fatal disease if not diagnosed and treated early. Therefore, for identifying cancerous (ALL) cells in medical diagnostic laboratories, blood, as well as bone marrow smears, are taken by pathologists. However, manual examinations face limitations due to human error risk and time-consuming procedures. So, to tackle the mentioned issues, methods based on Artificial Intelligence (AI), capable of identifying cancer from non-cancer tissue, seem vital. Deep Neural Networks (DNNs) are the most efficient machine learning (ML) methods. These techniques employ multiple layers to extract higher-level features from the raw input. In this paper, a Convolutional Neural Network (CNN) is applied along with a new type of classifier, Higher Order Singular Value Decomposition (HOSVD), to categorize ALL and normal (healthy) cells from microscopic blood images. We employed the model on IoMT structure to identify leukemia quickly and safely. With the help of this new leukemia classification framework, patients and clinicians can have real-time communication. The model was implemented on the Acute Lymphoblastic Leukemia Image Database (ALL-IDB2) and achieved an average accuracy of %98.88 in the test step.
Abstract:Leukemia (blood cancer) is an unusual spread of White Blood Cells or Leukocytes (WBCs) in the bone marrow and blood. Pathologists can diagnose leukemia by looking at a person's blood sample under a microscope. They identify and categorize leukemia by counting various blood cells and morphological features. This technique is time-consuming for the prediction of leukemia. The pathologist's professional skills and experiences may be affecting this procedure, too. In computer vision, traditional machine learning and deep learning techniques are practical roadmaps that increase the accuracy and speed in diagnosing and classifying medical images such as microscopic blood cells. This paper provides a comprehensive analysis of the detection and classification of acute leukemia and WBCs in the microscopic blood cells. First, we have divided the previous works into six categories based on the output of the models. Then, we describe various steps of detection and classification of acute leukemia and WBCs, including Data Augmentation, Preprocessing, Segmentation, Feature Extraction, Feature Selection (Reduction), Classification, and focus on classification step in the methods. Finally, we divide automated detection and classification of acute leukemia and WBCs into three categories, including traditional, Deep Neural Network (DNN), and mixture (traditional and DNN) methods based on the type of classifier in the classification step and analyze them. The results of this study show that in the diagnosis and classification of acute leukemia and WBCs, the Support Vector Machine (SVM) classifier in traditional machine learning models and Convolutional Neural Network (CNN) classifier in deep learning models have widely employed. The performance metrics of the models that use these classifiers compared to the others model are higher.