Abstract:Bearing fault diagnosis under varying working conditions faces challenges, including a lack of labeled data, distribution discrepancies, and resource constraints. To address these issues, we propose a progressive knowledge distillation framework that transfers knowledge from a complex teacher model, utilizing a Graph Convolutional Network (GCN) with Autoregressive moving average (ARMA) filters, to a compact and efficient student model. To mitigate distribution discrepancies and labeling uncertainty, we introduce Enhanced Local Maximum Mean Squared Discrepancy (ELMMSD), which leverages mean and variance statistics in the Reproducing Kernel Hilbert Space (RKHS) and incorporates a priori probability distributions between labels. This approach increases the distance between clustering centers, bridges subdomain gaps, and enhances subdomain alignment reliability. Experimental results on benchmark datasets (CWRU and JNU) demonstrate that the proposed method achieves superior diagnostic accuracy while significantly reducing computational costs. Comprehensive ablation studies validate the effectiveness of each component, highlighting the robustness and adaptability of the approach across diverse working conditions.
Abstract:Unsupervised domain adaptation (UDA) has shown remarkable results in bearing fault diagnosis under changing working conditions in recent years. However, most UDA methods do not consider the geometric structure of the data. Furthermore, the global domain adaptation technique is commonly applied, which ignores the relation between subdomains. This paper addresses mentioned challenges by presenting the novel deep subdomain adaptation graph convolution neural network (DSAGCN), which has two key characteristics: First, graph convolution neural network (GCNN) is employed to model the structure of data. Second, adversarial domain adaptation and local maximum mean discrepancy (LMMD) methods are applied concurrently to align the subdomain's distribution and reduce structure discrepancy between relevant subdomains and global domains. CWRU and Paderborn bearing datasets are used to validate the DSAGCN method's efficiency and superiority between comparison models. The experimental results demonstrate the significance of aligning structured subdomains along with domain adaptation methods to obtain an accurate data-driven model in unsupervised fault diagnosis.