Abstract:Human action recognition has become an important research focus in computer vision due to the wide range of applications where it is used. 3D Resnet-based CNN models, particularly MC3, R3D, and R(2+1)D, have different convolutional filters to extract spatiotemporal features. This paper investigates the impact of reducing the captured knowledge from temporal data, while increasing the resolution of the frames. To establish this experiment, we created similar designs to the three originals, but with a dropout layer added before the final classifier. Secondly, we then developed ten new versions for each one of these three designs. The variants include special attention blocks within their architecture, such as convolutional block attention module (CBAM), temporal convolution networks (TCN), in addition to multi-headed and channel attention mechanisms. The purpose behind that is to observe the extent of the influence each of these blocks has on performance for the restricted-temporal models. The results of testing all the models on UCF101 have shown accuracy of 88.98% for the variant with multiheaded attention added to the modified R(2+1)D. This paper concludes the significance of missing temporal features in the performance of the newly created increased resolution models. The variants had different behavior on class-level accuracy, despite the similarity of their enhancements to the overall performance.
Abstract:A smart home can be considered a place of residence that enables the management of appliances and systems to help with day-to-day life by automated technology. In the current paper is described a prototype that simulates a context-aware environment, developed in a designed smart home. The smart home environment has been simulated using three agents and five locations in a house. The context-aware agents behave based on predefined rules designed for daily activities. Our proposal aims to reduce operational cost of running devices. In the future, monitors of health aspects belonging to home residents will sustain their healthy life daily.