Abstract:This study introduces a novel methodology for fault detection and cause identification within the Tennessee Eastman Process (TEP) by integrating a Bidirectional Long Short-Term Memory (BiLSTM) neural network with an Integrated Attention Mechanism (IAM). The IAM combines the strengths of scaled dot product attention, residual attention, and dynamic attention to capture intricate patterns and dependencies crucial for TEP fault detection. Initially, the attention mechanism extracts important features from the input data, enhancing the model's interpretability and relevance. The BiLSTM network processes these features bidirectionally to capture long-range dependencies, and the IAM further refines the output, leading to improved fault detection results. Simulation results demonstrate the efficacy of this approach, showcasing superior performance in accuracy, false alarm rate, and misclassification rate compared to existing methods. This methodology provides a robust and interpretable solution for fault detection and diagnosis in the TEP, highlighting its potential for industrial applications.
Abstract:Brain tumor classification is a challenging task in medical image analysis. In this paper, we propose a novel approach to brain tumor classification using a vision transformer with a novel cross-attention mechanism. Our approach leverages the strengths of transformers in modeling long-range dependencies and multi-scale feature fusion. We introduce two new mechanisms to improve the performance of the cross-attention fusion module: Feature Calibration Mechanism (FCM) and Selective Cross-Attention (SCA). FCM calibrates the features from different branches to make them more compatible, while SCA selectively attends to the most informative features. Our experiments demonstrate that the proposed approach outperforms other state-of-the-art methods in brain tumor classification, achieving improved accuracy and efficiency. The proposed FCM and SCA mechanisms can be easily integrated into other vision transformer architectures, making them a promising direction for future research in medical image analysis. Experimental results confirm that our approach surpasses existing methods, achieving state-of-the-art performance in brain tumor classification tasks.
Abstract:Lung segmentation in chest X-ray images is a critical task in medical image analysis, enabling accurate diagnosis and treatment of various lung diseases. In this paper, we propose a novel approach for lung segmentation by integrating Hierarchical SegNet with a proposed multi-modal attention mechanism. The channel attention mechanism highlights specific feature maps or channels crucial for lung region segmentation, while the context attention mechanism adaptively weighs the importance of different spatial regions. By combining both mechanisms, the proposed mechanism enables the model to better capture complex patterns and relationships between various features, leading to improved segmentation accuracy and better feature representation. Furthermore, an attention gating mechanism is employed to integrate attention information with encoder features, allowing the model to adaptively weigh the importance of different attention features and ignore irrelevant ones. Experimental results demonstrate that our proposed approach achieves state-of-the-art performance in lung segmentation tasks, outperforming existing methods. The proposed approach has the potential to improve the accuracy and efficiency of lung disease diagnosis and treatment, and can be extended to other medical image analysis tasks.
Abstract:Lung segmentation in chest X-ray images is of paramount importance as it plays a crucial role in the diagnosis and treatment of various lung diseases. This paper presents a novel approach for lung segmentation in chest X-ray images by integrating U-net with attention mechanisms. The proposed method enhances the U-net architecture by incorporating a Convolutional Block Attention Module (CBAM), which unifies three distinct attention mechanisms: channel attention, spatial attention, and pixel attention. The channel attention mechanism enables the model to concentrate on the most informative features across various channels. The spatial attention mechanism enhances the model's precision in localization by focusing on significant spatial locations. Lastly, the pixel attention mechanism empowers the model to focus on individual pixels, further refining the model's focus and thereby improving the accuracy of segmentation. The adoption of the proposed CBAM in conjunction with the U-net architecture marks a significant advancement in the field of medical imaging, with potential implications for improving diagnostic precision and patient outcomes. The efficacy of this method is validated against contemporary state-of-the-art techniques, showcasing its superiority in segmentation performance.
Abstract:Fault detection and diagnosis (FDD) is a crucial task for ensuring the safety and efficiency of industrial processes. We propose a novel FDD methodology for the Tennessee Eastman Process (TEP), a widely used benchmark for chemical process control. The model employs two separate Transformer branches, enabling independent processing of input data and potential extraction of diverse information. A novel attention mechanism, Gated Dynamic Learnable Attention (GDLAttention), is introduced which integrates a gating mechanism and dynamic learning capabilities. The gating mechanism modulates the attention weights, allowing the model to focus on the most relevant parts of the input. The dynamic learning approach adapts the attention strategy during training, potentially leading to improved performance. The attention mechanism uses a bilinear similarity function, providing greater flexibility in capturing complex relationships between query and key vectors. In order to assess the effectiveness of our approach, we tested it against 21 and 18 distinct fault scenarios in TEP, and compared its performance with several established FDD techniques. The outcomes indicate that the method outperforms others in terms of accuracy, false alarm rate, and misclassification rate. This underscores the robustness and efficacy of the approach for FDD in intricate industrial processes.
Abstract:This study presents an innovative approach for predicting cryptocurrency time series, specifically focusing on Bitcoin, Ethereum, and Litecoin. The methodology integrates the use of technical indicators, a Performer neural network, and BiLSTM (Bidirectional Long Short-Term Memory) to capture temporal dynamics and extract significant features from raw cryptocurrency data. The application of technical indicators, such facilitates the extraction of intricate patterns, momentum, volatility, and trends. The Performer neural network, employing Fast Attention Via positive Orthogonal Random features (FAVOR+), has demonstrated superior computational efficiency and scalability compared to the traditional Multi-head attention mechanism in Transformer models. Additionally, the integration of BiLSTM in the feedforward network enhances the model's capacity to capture temporal dynamics in the data, processing it in both forward and backward directions. This is particularly advantageous for time series data where past and future data points can influence the current state. The proposed method has been applied to the hourly and daily timeframes of the major cryptocurrencies and its performance has been benchmarked against other methods documented in the literature. The results underscore the potential of the proposed method to outperform existing models, marking a significant progression in the field of cryptocurrency price prediction.
Abstract:Text-to-face is a subset of text-to-image that require more complex architecture due to their more detailed production. In this paper, we present an encoder-decoder model called Cycle Text2Face. Cycle Text2Face is a new initiative in the encoder part, it uses a sentence transformer and GAN to generate the image described by the text. The Cycle is completed by reproducing the text of the face in the decoder part of the model. Evaluating the model using the CelebA dataset, leads to better results than previous GAN-based models. In measuring the quality of the generate face, in addition to satisfying the human audience, we obtain an FID score of 3.458. This model, with high-speed processing, provides quality face images in the short time.
Abstract:Text summarization is one of the most critical Natural Language Processing (NLP) tasks. More and more researches are conducted in this field every day. Pre-trained transformer-based encoder-decoder models have begun to gain popularity for these tasks. This paper proposes two methods to address this task and introduces a novel dataset named pn-summary for Persian abstractive text summarization. The models employed in this paper are mT5 and an encoder-decoder version of the ParsBERT model (i.e., a monolingual BERT model for Persian). These models are fine-tuned on the pn-summary dataset. The current work is the first of its kind and, by achieving promising results, can serve as a baseline for any future work.
Abstract:The surge of pre-trained language models has begun a new era in the field of Natural Language Processing (NLP) by allowing us to build powerful language models. Among these models, Transformer-based models such as BERT have become increasingly popular due to their state-of-the-art performance. However, these models are usually focused on English, leaving other languages to multilingual models with limited resources. This paper proposes a monolingual BERT for the Persian language (ParsBERT), which shows its state-of-the-art performance compared to other architectures and multilingual models. Also, since the amount of data available for NLP tasks in Persian is very restricted, a massive dataset for different NLP tasks as well as pre-training the model is composed. ParsBERT obtains higher scores in all datasets, including existing ones as well as composed ones and improves the state-of-the-art performance by outperforming both multilingual BERT and other prior works in Sentiment Analysis, Text Classification and Named Entity Recognition tasks.
Abstract:Traffic flow characteristics are one of the most critical decision-making and traffic policing factors in a region. Awareness of the predicted status of the traffic flow has prime importance in traffic management and traffic information divisions. The purpose of this research is to suggest a forecasting model for traffic flow by using deep learning techniques based on historical data in the Intelligent Transportation Systems area. The historical data collected from the Caltrans Performance Measurement Systems (PeMS) for six months in 2019. The proposed prediction model is a Variational Long Short-Term Memory Encoder in brief VLSTM-E try to estimate the flow accurately in contrast to other conventional methods. VLSTM-E can provide more reliable short-term traffic flow by considering the distribution and missing values.