Abstract:Quantum neural networks represent a new machine learning paradigm that has recently attracted much attention due to its potential promise. Under certain conditions, these models approximate the distribution of their dataset with a truncated Fourier series. The trigonometric nature of this fit could result in angle-embedded quantum neural networks struggling to fit the non-harmonic features in a given dataset. Moreover, the interpretability of neural networks remains a challenge. In this work, we introduce a new, interpretable class of hybrid quantum neural networks that pass the inputs of the dataset in parallel to 1) a classical multi-layered perceptron and 2) a variational quantum circuit, and then the outputs of the two are linearly combined. We observe that the quantum neural network creates a smooth sinusoidal foundation base on the training set, and then the classical perceptrons fill the non-harmonic gaps in the landscape. We demonstrate this claim on two synthetic datasets sampled from periodic distributions with added protrusions as noise. The training results indicate that the parallel hybrid network architecture could improve the solution optimality on periodic datasets with additional noise.
Abstract:Earth imaging satellites are a crucial part of our everyday lives that enable global tracking of industrial activities. Use cases span many applications, from weather forecasting to digital maps, carbon footprint tracking, and vegetation monitoring. However, there are also limitations; satellites are difficult to manufacture, expensive to maintain, and tricky to launch into orbit. Therefore, it is critical that satellites are employed efficiently. This poses a challenge known as the satellite mission planning problem, which could be computationally prohibitive to solve on large scales. However, close-to-optimal algorithms can often provide satisfactory resolutions, such as greedy reinforcement learning, and optimization algorithms. This paper introduces a set of quantum algorithms to solve the mission planning problem and demonstrate an advantage over the classical algorithms implemented thus far. The problem is formulated as maximizing the number of high-priority tasks completed on real datasets containing thousands of tasks and multiple satellites. This work demonstrates that through solution-chaining and clustering, optimization and machine learning algorithms offer the greatest potential for optimal solutions. Most notably, this paper illustrates that a hybridized quantum-enhanced reinforcement learning agent can achieve a completion percentage of 98.5% over high-priority tasks, which is a significant improvement over the baseline greedy methods with a completion rate of 63.6%. The results presented in this work pave the way to quantum-enabled solutions in the space industry and, more generally, future mission planning problems across industries.
Abstract:Quantum machine learning has become an area of growing interest but has certain theoretical and hardware-specific limitations. Notably, the problem of vanishing gradients, or barren plateaus, renders the training impossible for circuits with high qubit counts, imposing a limit on the number of qubits that data scientists can use for solving problems. Independently, angle-embedded supervised quantum neural networks were shown to produce truncated Fourier series with a degree directly dependent on two factors: the depth of the encoding, and the number of parallel qubits the encoding is applied to. The degree of the Fourier series limits the model expressivity. This work introduces two new architectures whose Fourier degrees grow exponentially: the sequential and parallel exponential quantum machine learning architectures. This is done by efficiently using the available Hilbert space when encoding, increasing the expressivity of the quantum encoding. Therefore, the exponential growth allows staying at the low-qubit limit to create highly expressive circuits avoiding barren plateaus. Practically, parallel exponential architecture was shown to outperform the existing linear architectures by reducing their final mean square error value by up to 44.7% in a one-dimensional test problem. Furthermore, the feasibility of this technique was also shown on a trapped ion quantum processing unit.
Abstract:Powerful hardware services and software libraries are vital tools for quickly and affordably designing, testing, and executing quantum algorithms. A robust large-scale study of how the performance of these platforms scales with the number of qubits is key to providing quantum solutions to challenging industry problems. Such an evaluation is difficult owing to the availability and price of physical quantum processing units. This work benchmarks the runtime and accuracy for a representative sample of specialized high-performance simulated and physical quantum processing units. Results show the QMware cloud computing service can reduce the runtime for executing a quantum circuit by up to 78% compared to the next fastest option for algorithms with fewer than 27 qubits. The AWS SV1 simulator offers a runtime advantage for larger circuits, up to the maximum 34 qubits available with SV1. Beyond this limit, QMware provides the ability to execute circuits as large as 40 qubits. Physical quantum devices, such as Rigetti's Aspen-M2, can provide an exponential runtime advantage for circuits with more than 30. However, the high financial cost of physical quantum processing units presents a serious barrier to practical use. Moreover, of the four quantum devices tested, only IonQ's Harmony achieves high fidelity with more than four qubits. This study paves the way to understanding the optimal combination of available software and hardware for executing practical quantum algorithms.
Abstract:Cancer is one of the leading causes of death worldwide. It is caused by a variety of genetic mutations, which makes every instance of the disease unique. Since chemotherapy can have extremely severe side effects, each patient requires a personalized treatment plan. Finding the dosages that maximize the beneficial effects of the drugs and minimize their adverse side effects is vital. Deep neural networks automate and improve drug selection. However, they require a lot of data to be trained on. Therefore, there is a need for machine-learning approaches that require less data. Hybrid quantum neural networks were shown to provide a potential advantage in problems where training data availability is limited. We propose a novel hybrid quantum neural network for drug response prediction, based on a combination of convolutional, graph convolutional, and deep quantum neural layers of 8 qubits with 363 layers. We test our model on the reduced Genomics of Drug Sensitivity in Cancer dataset and show that the hybrid quantum model outperforms its classical analog by 15% in predicting IC50 drug effectiveness values. The proposed hybrid quantum machine learning model is a step towards deep quantum data-efficient algorithms with thousands of quantum gates for solving problems in personalized medicine, where data collection is a challenge.
Abstract:In this work we introduce a novel approach to the pulsar classification problem in time-domain radio astronomy using a Born machine, often referred to as a quantum neural network. Using a single-qubit architecture, we show that the pulsar classification problem maps well to the Bloch sphere and that comparable accuracies to more classical machine learning approaches are achievable. We introduce a novel single-qubit encoding for the pulsar data used in this work and show that this performs comparably to a multi-qubit QAOA encoding.